UNIVERSITI TEKNOLOGI MARA

THE EFFECT OF TAIL SWEEP ANGLE TO THE AERODYNAMICS AND STABILITY OF A BLENDED WING BODY AIRCRAFT (BASELINE V)

MOHAMAD ZULFAZLI ARIEF BIN ABD LATIF

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science (Mechanical Engineering)

Faculty of Mechanical Engineering

May 2019

ABSTRACT

Blended wing body (BWB) aircraft is theoretically designed based on the combination of conventional aircraft and flying wing which is likely to be the future concept of an aircraft. Some of the studies claim that BWB aircraft has higher lift to drag ratio compared to the conventional aircraft. However, by obtaining high lift to drag ratio only does not means that the aircraft has good longitudinal stability. Flight Technology and Test Centre (FTTC), Universiti Teknologi MARA Shah Alam began the research on BWB aircraft in 2005 and found problem related to the stability of the aircraft. Some ideas have been proposed to overcome the BWB's poor flight stability such as having large central elevator, installing canard, designing planform that mimics a bird, and installing long tail boom. Recently, the FTTC has come up with a BWB aircraft design with close-coupled tail known as Baseline V. The Baseline V BWB has been found to have high lift to drag ratio of 32 but its negative value of zero-lift moment hinders it from having favourable trim angle of attack. This research focuses on the tail of Baseline V the tail swept of 0° , 30° , 45° and 60° and the area is maintained. The objective of the research is to determine the best tail sweep angle for Baseline V which will gives the best aerodynamics performances and has good flying quality at trim condition. This research was carried out via wind tunnel experiments conducted at three different wind tunnel locations: Universiti Teknologi Malaysia Skudai, UiTM Shah Alam and Universiti Pertahan Nasional Malaysia Kuala Lumpur using a 1:1 scale full model, a 1:2 scale half model and a 2:7 scale half model respectively. Computational Fluid Dynamic (CFD) is also carried out just to compare with the wind tunnel data. The data obtained were analysed and plotted in term of lift coefficient, drag coefficient, lift to drag ratio and moment coefficients. The pitching angle for all experiments were varied between -10° to $+17^{\circ}$. The blockage corrections have been applied to the wind tunnel data. From the analysis, Baseline V shows a decrement of lift coefficient as the tail sweep angle increase. The 0° tail sweep angle configuration has the highest lift coefficients with respect to the angle of attack and the then followed by 30° , 45° and 60° tail sweep angle configuration. For the drag coefficients, the results obtained does not has trend as it shows that the 60° tail configuration has the lowest drag. The 30° tail configuration produced the highest drag and subsequently 0° and 45° tail configurations. It was found that by sweeping the tail sweep angle backward, the moment coefficients increase. The 60° recorded the highest C_M and consequently 45°, 30° and 0° tail sweep angle configuration. From the results plotted, mathematical relationship with respect to the tail sweep angle was established. At trim condition, the 60° tail sweep angle configuration gives the best aerodynamic efficiency and good longitudinal stability.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my MSc and for completing this long and challenging journey successfully. My gratitude and thanks go to my supervisor Dr. Rizal Effendy Mohd Nasir and my co supervisor Prof Dr. Wirachman Wisnoe who guided and patiently assisting me to complete this whole research. Theirs ideas and advice are very valuable to me.

My appreciation goes to the Dr. Iskandar Shah Ishak and crew members of the Universiti Teknologi Malaysia (UTM) especially Mr. Basid Bin Abdul Rahman who provided assistance during wind tunnel test experiment. I also want to express my gratitude to Dr Mohd Rashdan Saad and his postgraduate students for helping me during wind tunnel experiments at UPNM. Also to Mr. Muhammad Shahrizal Mohd Suboh for the assistance during wind tunnel test at UiTM Shah Alam. Special thanks to my colleagues and friends for helping me with this project.

Finally, this thesis is dedicated to the loving memory of my very dear late father and my lovely mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah.

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF PLATES	xiii
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	xvi

CHAI	PTER ONE: INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	4
1.3	Research Questions	5
1.4	Objectives	5
1.5	Hypothesis	5
1.6	Significance of Study	6
1.7	Scope of Study	7

CHAP	TER TWO: LITERATURE REVIEW	9
2.1	Introduction	9
2.2	Flying wing	10
2.3	Blended wing body	11
2.4	Aerodynamics	13
2.5	Stability	14
2.6	Tail Design	17
2.7	Wind Tunnel Experiment	19

2.8	Computational Fluid Dynamic		22
2.9	Summary		24
СНА	APTER THREE: RESEARCH METHODO	DLOGY	25
3.1	Development of Baseline V		25
	3.1.1 Baseline V CAD Drawing		26
	3.1.2 Configurations of tail design		27
	3.1.3 Specifications of the aircraft		28
	3.1.4 Fabrication of wind tunnel model		34
3.2	Wind Tunnel Experiment		36
	3.2.1 Full Scale Model		37
	3.2.2 1:2 Scale Half Model		42
	3.2.3 2:7 Scale Half Model		46
	3.2.4 Data processing		49
3.3	3.3 Computational Fluid Dynamic (CFD)		50
	3.3.1 Identification of cases		51
	3.3.2 Preparation of CAD drawing		51
	3.3.3 CFD simulation		53
3.4	Theoretical Analysis		53
	3.4.1 Basic Aerodynamic		54
	3.4.2 Sweep Tail Angle Cases		56
	3.4.3 Relationship between moment coef	ficient and lift coefficient	58
	3.4.4 Lift to Drag Ratio		59
СНА	APTER FOUR: RESULTS AND DISCUSS	SION	61
4.1	Introduction		61
4.2	2:7 Half Scale Model Results		62
4.3	Full scale model Results		64
4.4	1:2 Scale Half Model Results		68
4.5	CFD Simulation Results		72
4.6	Analysis on Wind Tunnel and CFD Data		76
	4.6.1 0° Tail Sweep Angle Cases		76
	4.6.2 30° Tail Sweep Angle Cases		79