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 Abstract:  

Prediction of Indoor Air Quality and Sick Buildings Syndrome Symptoms (SBSS) was developed 

to predict the relative humidity (RH) inside the building. The developed generalized linear model 

(GLM) model consider relative humidity as dependent variables and independent variables consists 

of Indoor Air Quality Parameters (IAQ) such as ventilation performance indicator, physical and 

chemical parameters besides present SBSS. Primary data was collected, and distribution of 

questionnaires was conducted at the same time. Three models were developed which named Model 

A, Model B and Model C. A logarithmic link function was considered with a Poison probability 

distribution. Particular attention was dedicated to cases with Relative Humidity<mean (Model A), 

Relative Humidity mean range (Model B) and Relative Humidity >mean (Model C). Results indicate 

that best performance was Model A which outperformed Model B and Model C. It showed that there 

were a few contributions of SBS and IAQ towards RH inside the building such as dizziness, 

drowsiness, heavy headed, headache, temperature and PM10. This study showed that Model A 

(R2=96.8%) outstand Model B (86.9%) and Model C (93.5%) due to the data collected mostly 

distribute lower than mean value of RH. 
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1.  INTRODUCTION 

   Develop and developing countries people spent almost 
90% per day their times indoors which become most 
important and gain growing attention due to larger proportion 
of their time in indoor area either in offices or homes (Cheng 
et al., 2022; Pottier et al., 2021). Previous research studies 
showed that indoors air is more contaminated than ambient air 
(Mansor et al.,2020; Awada et al., 2022). The most common 
indoor air pollutants that been monitored was formaldehyde 
(HCHO), particulate matter (PM) or known as respirable 
particulates, volatile organic compound (VOCs), carbon 
monoxide (CO), carbon dioxide (CO2) and ozone (O3) 
(Mentese et al., 2020; Wolkoff., 2018; Ye et al., 2014). 
Assessments of indoor air quality are carried out for various 
reasons, which include identifying sources of pollutants in 

indoor environments and assessing their potential adverse 
effects on the health of occupants. Another purpose is to 
determine whether indoor air quality meets recommended 
standards and guidelines for health and comfort, as well as to 
evaluate the effectiveness of ventilation systems and other 
measures for controlling indoor air quality. Such assessments 
also aim to identify potential risks associated with indoor air 
pollution and develop strategies for minimizing them. 
Ultimately, indoor air quality assessments provide valuable 
information and guidance to building occupants and owners 
on maintaining a healthy and comfortable indoor environment. 
Sick Building syndrome (SBS) is one of the scopes to 
determine the IAQ which covers unspecified adverse health 
effects due to poor IAQ. The wording “syndrome” used in this 
scope due to unidentified factors or sources have not been 
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fully confirmed yet (Yin et al., 2022; Lucialli et al., 2020). 
Previous research has demonstrated that prolonged exposure 
to poor indoor air quality can lead to various health problems 
and symptoms, which vary in severity depending on the 
intensity of the indoor air pollution sources (Aziz et al., 2023). 
Buildings that have been found to cause such problems are 
referred to as "sick buildings". Sick building syndrome (SBS) 
is characterized by a wide range of personal symptoms that 
are believed to be caused by exposure to indoor environmental 
sources, although the exact cause of these symptoms remains 
unclear. A combination of multiple factors or single factors 
was the cause of SBS. Roughly, the factors can be caused by 
humidity, insufficient ventilation, chemical pollutants which 
caused by indoor environments, light, biological pollutants 
which can comes from external sources and temperature 
(Kwon et al., 2019; Argunhan et al., 2018). WHO identified 
SBS by complaints that used as one indicator to identify the 
occupants' symptoms such as general health problems or 
neurotoxic, nose, eyes and throat irritation, skin irritation, 
odours and taste sensations and nonspecific hypersensitivity. 
Latest studies showed that potential sources that contribute to 
SBS was paints, cleaning agents, building products, 
combustions of fuels, cosmetics and many more (Abdullah et 
al., 2018) air pollution and prediction modelling can be used 
to inform in advance contingency plans which helps in 
reducing the adverse impacts of air pollution on population, 
especially on the sensitive group, as their internal organs are 
fragile. The complexity of indoor air pollutants and SBS can 
be represented by Generalized Linear Models (GLM) because 
of its data contain qualitative and quantitative data and GLM 
can be used in different types of data which mainly in 
prediction and therefore giving early useful information for 
community. This study was conducted to develop the 
relationship between IAQ with SBS using GLM which 
important for occupants’ safety and comfortability. Good 
Indoor Air Quality (IAQ) contributes to a favourable 
environment for occupants, the performance of teachers and 
staff and a sense of comfort, health, and well-being. These 
elements combined to assist a building in its core mission, 
which is educating community (Ziang et al., 2022; Rosbach et 
al., 2016). Studies of air pollutants movement indicate that 
indoor levels of pollutants may be two to five times and 
occasionally more than 100 times higher than outdoor levels. 
Performance ventilation indicator, chemical and physical 
parameter was important to be measured to investigate how 
outdoor sources influence air flow inside the buildings. Data 
collected was utilized for determine the acceptance of the 
pollutants inside the building with the standard which is 
Industrial Code of Practice Indoor Air Quality (ICOP-IAQ) 
2010 was important as a baseline data. Due to the complexity 
of indoor air pollutants, qualitative and quantitative model 
used which is better compared to others basic model because 
no assumptions are being made throughout the modelling 
process, which can be used in different scenarios which 
therefore give more accurate and precise indoor air quality of 
real-world conditions (Zhai et al., 2020; Korsavi et al., 2022; 
Derby et al., 2016). Model prediction is important for 

regulatory agencies in setting indoor air quality regulations to 
protect our young children health and well-being.  

2. MATERIALS AND METHODS

2.1 Study Area and Data Collection 

Sekolah Kebangsaan Tanjung Gelam (103° 4'50.64"E, 
5°24'46.89"N) was choose as study area. The school located 
at Kuala Nerus district at Terengganu, Malaysia.   The study 
was conducted in the teacher’s room at level 3 of the school 
buildings. The teacher’s room consists of 11 teachers. Age 
range of the teachers involved were <25 years old (54.5%), 
25-39 years old (9.1%), 40-55 years old (27.3%) and >55 
years old (9.1%). Site selection was chosen to determine the 
comfortability of the teachers in their rooms. This is due to the 
study area used ceiling fans rather than air conditioning. 
Besides ceiling fans, the rooms ventilation was windows and 
doors. Layout and location of the classrooms showed in 
Figure 1. 

Figure 1. Study area 

This study was measured physical, chemical and ventilation 
performance indicators of the study are. Chemical parameters 
consist of carbon monoxide (CO) ppm, formaldehyde (HCHO) 
ppm, respirable particulate (PM) µg/m3, and total volatile 
organic compound (TVOC) ppm. The physical parameters 
included relative humidity (RH) %, temperature (T) oC, and 
air movement (AM) m/s and the ventilation performances 
indicators were carbon dioxide (CO2) ppm. Primary data 
monitored consists of 10 days of working hours for sampling 
with 10 minutes time intervals and distribution of 
questionnaires was conducted at the same time. Table 1 
showed the instruments used to measure ventilation 
performances indicators, chemical and physical parameters. 
Based on Industrial Code of Practice (ICOP) 2010, 
instruments placed at a height between 75 and 120 cm from 
the floor. Questionnaire distribution involved teachers inside 
the buildings that have been monitored. The questionnaire 
consists of 5 section that involved general information, 
background factors, nature of occupation, environmental 
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conditions and symptoms that involved past and present 
symptoms which adopt from Industrial Code of Practice 
Indoor Air Quality (ICOP-IAQ 2010). Present symptoms 
consist of drowsiness, feeling heavy headed, headache, 
dizziness, nausea/vomiting, cough, irritated and stuffy nose 
and more, while for past situation consists of the situation at 
the study area for the past three months such as the 
temperature eithers it is too low or high, draught, dry air, 
unpleasant odours, dust and dirt and passive smoking. 

Table 1. List of instruments 

Instruments Parameters 

TSI Climomaster Model 

9545 

Temperature, relative 

humidity, and air movement 

DustTrak DRX Aerosol 

Monitor 8533 

RSP (PM10, PM2.5) 

Q-Trak Indoor Air Quality 

Monitor 7575 

Carbon dioxide and carbon 

monoxide 

Formaldehyde meter Formaldehyde 

Portable VOC Monitor 

MiniRae 30000 

TVOC 

2.2 Data Analysis 

Descriptive analysis was conducted due to its fundamental 
component in helping to analyze the data. There are several 
descriptive statistics that were evaluated in this study such as 
mean, median, mode, standard deviation, variance, and range. 
Statistical distribution measures, also known as descriptive 
statistics or summary statistics are used to summarize the 
information from collected or set of data. In this study mean 
values was used to compare with the ICOP-IAQ 2010 
guidelines 

Correlation analysis was also used in this study which used to 
determine the relationship between two variables ‘x’ and ‘y’. 
In correlation, there is no difference between dependent and 
independent variables. Correlation can be positive or negative. 
When the two variables move in the same direction, for 
instance, one variable increases, followed by another variable, 
then the variables are positively correlated (r=1). However, 
when two variables are inversely proportional to one another, 
then the variable is negatively correlated (r=- 1). 

In addition, Generalized Linear Model (GLM) commonly 
used to estimate associations between the total carbon 
footprint and the sources of the emission was also used in this 
study (Mentese et al., 2020). Therefore, GLM was applied to 
find associations between source of CO2 and total carbon 
footprint data of this study. The GLM are junction of linear 
and non-linear models with a distribution of exponential 
family (normal, inverse normal, binomial, Poisson and 
gamma functions) and logistic models. The GLM is formed 
by the following three components (Tong et al., 2018): 

• Random components: n values of the response
variable (yi, …...yn)

• Systematic component: a linear structure for the
regression model ( 𝜼 = 𝜷𝒙𝑻 ), where 𝒙𝑻 =
(𝟏, 𝒙𝒊𝟏, 𝒙𝒊𝟐, … , 𝒙𝒊𝒏)𝑻 , i=1…m represents the
explanatory or independent variables and;

• Link function: a montone and differentiable function
g, which connects the random and systematic
components relating dependent variable mean (µ)
with the linear structure in equation 1:

𝒈(𝝁𝑰) = 𝒙𝒊
𝒕𝜷, 𝒊 = 𝟏 … . . 𝑲 (1) 

where (β = β1 β2 … βp) are the values of parameters to be 
estimated. Thus, if we consider for the function g the identity 
function we have: 

𝒈(𝝁𝒊) = 𝝁𝒊 (2) 

Then 

𝝁𝒊 = 𝑬(𝒀𝒊) = 𝒙𝒊
𝒕𝜷 (3) 

The resulting model is the linear regression model. If 
alternatively, consider the function g as a logarithmic function 
and Yi has a Gamma distribution, then the model will result in 
a Gamma regression model and each term βi is the effect of 
variable Xi in g (μi) (Mentesene et al., 2020; Pekey et al., 2008; 
Lu et al., 2015; Ul-Saufie et al., 2013). Each βi represents the 
“effect” of variable Xi in the function g(µi). In this case the 
objective is to estimate indoor air quality based on other 
variables, like past and present symptoms besides indoor air 
quality parameters that consists of physical and chemical 
parameter (Mentese et al., 2020; Lazovic et al., 2015).  
Statistical Package software for Social Sciences SPSS 10.0 for 
windows was used to build and analyse the model. 

Each distribution has unique link function. The distribution 
most used on the estimation of air pollution health impacts in 
Gamma function (Aroonsrimorakat et al., 2013; Soleimani et 
al., 2019), of which link function is 𝜼 = 𝐥𝐨𝐠(µ),then µ = 𝒆𝒊.
Thus, η follows a linear model’s assumptions rather than µ, 
using matrix notation showed in Table 1: 

𝐥𝐨𝐠(µ) = 𝜷𝒙𝑻 + 𝒇 (4) 

Table 2. General parameter 

Model Information 

Dependent Variable RH 

Probability Distribution Gamma 

Link Function Log 
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3. RESULTS AND DISCUSSION

Study area consists of 11 workers which are teachers that
classified into 68.4% was female and 31.6% male. 52.63% of 
the occupants was working at the stay area more than 5 years. 
Respondents consists of several age stage which are 40-57 
years old (57.9%), 25-29 years old (15.8%), <25 years old 
(21.1%) and >55 years old (5.3%). Most of the occupant 
believe that present symptoms inside the building was cause 
due to environment of workstation was 84.2%, 10.5% not 
agreed that environment of the workstation was cause the 
symptoms and 5.3% was not sure the cause of the present 
symptoms. These findings were important to determine the 
background of the study area. Table 3 showed descriptive 
statistics for indoor air quality (IAQ) in the study area and 
most of the time comply with the ICOP-IAQ 2010. All 
chemical parameters were under limit, but physical 
parameters have a few times that follows the standard but for 
physical parameters there were a few times that the air 
movements were insufficient due to the value was lower than 
the standards range and the temperature was exceed the limit 
for a few times which cause decrease comfortability among 
the occupants inside the teacher’s room. 

Table 3. Mean of the study area and Standard value of ICOP-
IAQ 

Parameter Mean Standard 

ICOP-IAQ 

T (OC) 27-31.45 23-26 

RH (%) 70.45-83.35 40-70 

AM (m/s) 0.105-0.18 0.15-0.50 

CO2 (ppm) 353-432.5 <1000 

CO (ppm) 0-0.8 10 

HCHO 

(ppm) 

0.02-0.04 0.1 

PM10 

(mg/m3) 

0.0255-0.0385 0.15 

PM2.5 

(mg/m3) 

0.0235-0.034 0.15 

PM1 (mg/m3) 0.0215-0.0335 0.15 

GLM models were used to investigate the complex 
relationships between the physical, chemical, ventilation 
performance indicators and sick building syndrome symptoms 
in the teacher’s room. 

𝐼𝑛 [𝑅𝐻] = 𝛼 + 𝛽1 𝑣𝑎𝑟1 + 𝛽2 𝑣𝑎𝑟2+. . 𝛽𝑛 𝑣𝑎𝑟𝑛) (5) 

Based on these results, RH can be expressed as the product of 
exponential terms: 

[𝑅𝐻] = 𝑒(𝛼+𝛽1 𝑣𝑎𝑟1+𝛽2𝑣𝑎𝑟2+..𝛽𝑛 𝑣𝑎𝑟𝑛) (6)

The first term contains the regression intercept, and the rest 
terms contain binary variables, originated from GLM model 
as explained above. This methodology as applied to three 
tested models A, B and C. The three models presented in table 
4 differ only in data considered. In model A, we considered 
the low temperature of observations recorded. In model A we 
considered the observations recorded standard (RH<70.45%), 
Model B was (RH70.45-83.35) and Model C (RH>83.33%). 
These considerations are shortly resumed in table 3. 

Table 4. Specific models short description. 

The ᵦ coefficient obtained with methodology implemented for two 

models. 

Model Equation 

A 𝐼𝑛 𝑅𝐻𝑚𝑖𝑛
= 1.392 + 0.265[𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 1]
+ 0.219[𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 2]
− 0.240[𝐹𝑒𝑒𝑙𝑖𝑛𝑔 𝐻𝑒𝑎𝑣𝑦 𝐻𝑒𝑎𝑑𝑒𝑑, 1]
− 0.201[𝐹𝑒𝑒𝑙𝑖𝑛𝑔 𝐻𝑒𝑎𝑣𝑦 𝐻𝑒𝑎𝑑𝑒𝑑, 2]
− 0.080[𝐷𝑖𝑧𝑧𝑖𝑛𝑒𝑠𝑠, 1]
− 0.024[𝑆𝑘𝑖𝑛 𝑖𝑡𝑐ℎ𝑖𝑛𝑒𝑠𝑠, 1]
− 0.031[𝑆𝑘𝑖𝑛 𝐼𝑡𝑐ℎ𝑖𝑛𝑒𝑠𝑠, 2]
+ 0.091 𝑇𝑚𝑖𝑛 + 0.0337𝑃𝑀10

B 𝐼𝑛 𝑅𝐻 𝑚𝑒𝑑
= 6.441 + 0.067[𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 1]
+ 0.036[𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 2]
− 0.019[𝐷𝑖𝑧𝑧𝑖𝑛𝑒𝑠, 1]
+ 0.001[𝑆𝑘𝑖𝑛 𝑟𝑎𝑠ℎ, 1]
+ 0.005[𝑆𝑘𝑖𝑛 𝑟𝑎𝑠ℎ, 2] − 0.070 𝑇
− 1.524𝑃𝑀10

Model Restriction Dependant 

variable 

covariates 

A RH< 70.45 Temp min Headache, Feeling 

heavy headed, 

Dizziness, Skin rash 

itchiness, T, PM10 

B RH 70.45-

83.35 

Temp med Headache, Skin rash, 

Temperature and 

PM10 

C RH >83.335 Temp max Headache, T max, 

Feeling heavy 

headed, CO2, PM2.5, 

Hoarse dry throat 
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C 𝐼𝑛𝑅𝐻 𝑚𝑎𝑥
= 4.555 + 0.030{𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 1]
+ 0.027[𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 2] + 0.006𝑇
− 0.027[𝐹𝑒𝑒𝑙𝑖𝑛𝑔 𝐻𝑒𝑎𝑣𝑦 𝐻𝑒𝑎𝑑𝑒𝑑, 1]
− 0.024[𝐹𝑒𝑒𝑙𝑖𝑛𝑔 𝐻𝑒𝑎𝑣𝑦 𝐻𝑒𝑎𝑑𝑒𝑑, 2]
− 0.001𝐶𝑂2 + 0.136𝑃𝑀2.5

− 0.004[𝐻𝑜𝑎𝑟𝑠𝑒 𝑎𝑛𝑑 𝐷𝑟𝑦 𝑇ℎ𝑟𝑜𝑎𝑡, 1]
− 0.007 [𝐻𝑜𝑎𝑟𝑠𝑒 𝑎𝑛𝑑 𝐷𝑟𝑦 𝑇ℎ𝑟𝑜𝑎𝑡] 

Equation above showed that RH was increased by 0.265 and 
0.218 unit when respondent was feeling [headache, 1] 
variables [yes, often] or [headache, 2] for [yes, sometimes], 
and go up by one unit, 0.240 or 0.201 unit in decreasing one 
unit of [Feeling heavy headed,1] or [Feeling heavy headed, 2], 
0.080 unit for the decrease in one unit of [Dizzines,1], 0.031 
unit when [skin itchiness,2] decreased by one unit, 0.091 unit 
increase in one unit of temperature (T) and 0.337 unit in 
increasing one unit of PM10 for Model A. Basically RH has 
interaction with increasing of headache, temperature and 
PM10 and inversely proportional with skin itchiness, feeling 
heavy headed and dizziness (Abdullah et al., 2019). Previous 
study stated that there is increasing evidence that air pollution, 
and particularly small particulate pollutants, can induce 
transient increases in the risk—or triggering—of myocardial 
infarction, stroke, congestive heart failure, ventricular 
arrhythmias, asthma, and respiratory infections. A few small 
studies have suggested that various forms of air pollution may 
be linked to headache, as have two Canadian studies that 
compared trends in hospital visits for headaches and pollutant 
levels. To our knowledge, no studies have evaluated whether 
indoor air pollution and particularly fine particulate matter 
which triggers migraines or other headache syndromes using 
case-crossover physical parameter such as temperature and 
relative humidity, which directly compares levels of 
pollutants and physical variables at the time of presentation 
for headaches to corresponding levels on preceding and 
subsequent weeks (Tietjen et al., 2012). 

Table 5 shows a resume of the statistical model results 
performance for two models (A, B and C). The first column 
of Table 3 presents the statistics tests most often used in 
generalized linear models and represent measures of 
dispersion (generalized and/or corrected), which permit to test 
the quality of models. Values from Table 4, confirm that 
model A is the one with best performance results shown by 
statistical tests. These statistics tests are obtained using all the 
deviations obtained between the estimated and recorded 
(residuals) for each observation. Considering the Akaike 
Information Criterion, the objective is to minimize AIC. From 
the three models, model A is the one with lowest AIC, which 
means that evidence for the model A is the best compare with 
Model B and C. The same can be concluded when analysing 
AICC (Akaike Information Criterion corrected by minimizing 
the number of model parameters). When comparing with the 
quantile of a chi-square distribution with n-p degrees of 
freedom (n-number of observations, p-number of estimated 

parameters) it is possible to measure the suitability of models 
Results of deviance show that the three are suitable. Another 
measure of goodness of fit is the Pearson chi-square test, 
which leads to the same conclusions when compared with the 
quantile of the chi-square distribution with n-p degrees of 
freedom. Table 6 shows the likelihood ratio chi-square test, 
which compares each model with the null model. Regardless 
of model A is considered the best, each model individually, 
has a greater explanation of the dependent variable using some 
of the explanatory than any other model without explanatory 
variables. 

Table 5. Resume of model’s results performance. 

Goodness of Fita 

T min T med T max 

Deviance .000 .001 .000 

Scaled Deviance 11.000 11.000 11.000 

Pearson Chi-Square .000 .001 .000 

Scaled Pearson Chi-

Square 

11.000 10.989 11.016 

Log Likelihood b -1.958 12.967 6.718 

Akaike's Information 

Criterion (AIC) 

5.916 43.934 8.564 

Finite Sample Corrected 

AIC (AICC) 

223.934 

Bayesian Information 

Criterion (BIC) 

30.293 47.515 12.941 

Consistent AIC (CAIC) 41.293 56.515 23.941 

Dependent Variable: RH min 

Model: (Intercept), Headache, Feeling heavy headed, Dizziness, 

Skin rash itchiness, T min, PM10mina 

Dependent Variable: RH med 

Model: (Intercept), Headache, Dizziness, Skin rash itchiness, T 

med, PM10meda 

Dependent Variable: RH max 

Model: (Intercept), Headache, T max, Feeling heavy headed, 

CO2max, PM10max, Hoarse dry throat a 

a. Information criteria are in small-is-better form.

b. The full log likelihood function is displayed and used in

computing information criteria. 
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Table 6. Models’ likelihood ratio chi-square test 
performance 

Model 

Likelihood Ratio Chi-

Square df Sig. 

RH min 8.399 9 .000 

RH med 22.001 7 .003 

RH max 30.057 9 .000 

Dependent Variable: RH min 

Model: (Intercept), Headache, Feeling heavy headed, 

Dizziness, Skin rash itchiness, T min, PM10mina 

Dependent Variable: RH med 

Model: (Intercept), Headache, Dizziness, Skin rash 

itchiness, T med, PM10meda 

Dependent Variable: RH max 

Model: (Intercept), Headache, T max, Feeling heavy 

headed, CO2max, PM10max, Hoarse dry throat a 

a. Compares the fitted model against the intercept-only

model. 

Figure 2 shows the scattered plot with rh measures versus 
temperature values predicted by three models (A, B and C). 
The R2 values for model A outstanding than model B due to 
the R2 of model A (R2= 0.968) higher than model B (R2= 0.869) 
and C (R2= 0.935). The calculation of R2 showed that model 
A was the best fitted model with R2=96.8%.  

a) 

b) 

c) 

Figure 2. Model Validation. 

a) Model A, b) Model B, c) Model C

4. CONCLUSION

In conclusion, this study showed that there were a few
contributions od SBS and IAQ towards temperature inside the 
building such as dizziness, heavy headed, headache and 
itchiness, besides PM 10 and temperature. This study showed 
that Model A (R2=96.8%) outstand Model B (86.9%) and 
Model C (93.5%). Results shows a good accuracy for 
situations. The model is important tool in situations where 
there are no measurements of relative humidity, but it is 
possible to achieve data from other gaseous air pollutants and 
SBS. 
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