UNIVERSITI TEKNOLOGI MARA

SURFACE MODIFICATION OF BIOCHAR DERIVED FROM GAHARU WASTE FOR THE TREATMENT OF FINAL DISCHARGE LEACHATE

SITI ZAHARAH BINTI ROSLAN

Thesis submitted in partial fulfillment of the requirements for the degree of **Master of Science** (Chemical Engineering)

Faculty of Chemical Engineering

August 2019

ABSTRACT

In current years, worldwide demands for products based on gaharu have continuously increased especially in the production of essential oil. In future, the growth of gaharu processing in Malaysia is expected to be in increasing pattern. In the meantime, the production of gaharu oil yielded huge amount of waste in the form of woody mass due to the low ratio of oil yield over the amount of agarwood used. As one way to overcome this problem, this research came out with production of biochar using feedstock from gaharu waste. Biochar derived from agricultural waste is increasingly been proven as a worthy medium for adsorption purpose. There is still little information on the outcome of treatment of leachate using biochar if modification has been made as an innovation. This research is evaluating the effect of modification using chemicals onto the surface of biochar that is derived from gaharu residual for the treatment of leachate final discharge. Gaharu biochar carbonized at 800°C and 150 min recorded the maximum value adsorption capacity and BET value which are 73.32 mg/g and 135.68 m2/g respectively. Among the chemical that was used to modify the surface of biochar, gaharu biochar washed with ethanol and carbonized at 800°C and 150 min recorded the maximum value adsorption capacity and BET value which is 78.14 mg/g and 287.48 m2/g. After the adjustment of pH, leachate with lowest turbidity measured at pH 8. Thus, the dosing test was done at pH 8. It was found that the optimum dosage of biochar is at 2 g to achieve highest removal of final discharge of leachate where the turbidity, colour, COD, and TSS were reduced from 3.175 NTU, 188.5 mg/L, 172 mg/L and 4 mg/L to 1.695 NTU, 184.5mg/L, 16 mg/L and 5 mg/L respectively. From the result obtained, gaharu biochars that modified with ethanol gave higher sorption of methylene blue as compared to unmodified biochar. The result is confirmed with SEM analysis which shows the pore size distribution of biochar surface. Results obtained are highlighting the effectiveness of modification using ethanol onto biochar for treatment of final discharge leachate.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my master and for completing this challenging journey successfully. My gratitude and thanks go to my supervisor Dr Juferi Idris and co-supervisor, Prof Ku Halim and Assoc. Prof Yoshito Ando, for their inspiration, encouragement and guidance on this research. Besides that, I would like to express my gratefulness to Mr. Mohibah Musa who guide and help me throughout this project. Without his assistance and dedicated involvement in every step throughout the process, this project would have never been accomplished. I would like to thank you very much for your support and understanding over these past two years. My sincere appreciation also extends to all my fellow colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Most importantly, none of this could have completed without my family for their motivation and relentless support. I am extremely grateful to my parents for their love, prayers, caring and sacrifices for educating and preparing me for my future. Alhamdulillah.

TABLE OF CONTENTS

			Page			
CON	NFIRMA	ii				
AUT	iii					
ABS	TRACT	iv v vi xi xii				
ACH	KNOWLI					
TAB	BLE OF (
LIST	Г ОГ ТА					
LIST	Г OF FIC					
LIST	Г OF PL	ATES	XV			
LIST	Г OF SY	MBOLS	xvi			
LIST	Г OF AB	BREVIATIONS	xvii			
СНА	APTER O	DNE: INTRODUCTION	1			
1.1	Resear	rch background	1			
1.2	Proble	Problem statement				
1.3	Object	tives	6			
1.4	Signif	Significance of Study				
1.5	Hypot	heses	6			
СНА	PTER T	WO: LITERATURE REVIEW	8			
2.1	Introd	8				
2.2	Biochar					
2.3	Bioma	11				
	2.3.1	Source of biomass	12			
	2.3.2	Composition of biomass	16			
2.4	Biochar Production Technologies		18			
	2.4.1	Pyrolysis	19			
	2.4.2	Biochar Production Technologies	22			

3.1	Introduction		58
СНАР	TER TI	HREE: RESEARCH METHODOLOGY	58
		2.11.1.4 Adsorption	57
		2.11.1.3 Membrane filtration	56
		2.11.1.2 Ammonium stripping	56
		2.11.1.1 Coagulation-flocculation	55
	2.11.1	Physicochemical Leachate Treatment Methods	55
2.11	Treatm	54	
		General Characteristics of Landfill Leachate	52
		Formation of Leachate	50
2.10	Landfill leachate		50
	2.9.3	Design of Sanitary Landfill	48
	2.9.2	Sanitary Landfill	47
	2.9.1	Landfill in Malaysia	44
2.9	Munici	42	
	2.8.2	Physical Steam Modification	42
	2.8.1	Chemical Modification	39
2.8	Surface	39	
	2.7.2	Agricultural	37
	2.7.1	Environmental	35
2.7	Biocha	r Applications	34
	2.6.3	Adsorption Capacity	33
	2.6.2	Surface Charge and Functional Groups	32
	2.6.1	Specific Surface Area and Porosity	30
2.6	Biocha	r Characteristics	29
	2.5.4	Particle Size	28
	2.5.3	Heating Rate	27
	2.5.2	Retention Time	26
	2.5.1	Temperature	24
2.5	Operating Parameters		24
	2.4.3	Hydrothermal Carbonization	23

••
V11
V I I