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ABSTRACT 

 

The medical industry benefits greatly from the additive manufacturing (AM) 

technology used on customized products. Total knee arthroplasty (TKA) has 

been widely used however it has drawbacks of stress shielding and loosening 

due to the excessive daily routine of patients. The problem could be minimized 

by applying lattice structures to the implant and mimicking the actual density 

of human bone. This study aims to investigate the optimal design of a Ti6Al4V 

alloy tibial tray by applying different types of lattice structure designs. A finite 

element analysis was used to investigate the mechanical behavior of uniform 

and non-uniform lattice structures in a walking position. Functional gradation 

structure was optimized on selected regions of the tibial tray with weight 

reduction and adaptation to the near actual density of the human bone without 

compromising its mechanical performance. The results indicated that the 

Voronoi structure has improved stress behavior and the capability to 

withstand the loads exerted, based on the Von Mises stress result of the 

Voronoi structure at 35.83 MPa as compared to the gyroid and diamond 

structures at 61.65 MPa and 49.74 MPa, respectively. The optimal design of 

the tibial implant was achieved by functionally graded lattice structures, 

replacing the solid tibial implant. 
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Introduction  
 

The rapid development of Additive Manufacturing (AM) technologies 

contributes towards the expansion of the industry’s design and engineering 

approach. This technology is a process to manufacture solid parts through 

layer-by-layer addition of material by melting the material from a heat source 

[1]. Selective Laser Melting (SLM) is a process based on laser melted metal 

powder. This process also offers advantages in complex geometry, low 

manufacturing cost, and reduced fabrication time [2]. Furthermore, AM has 

been widely applied in biomedical industries, especially for orthopedics, 

implants, and human tissue. 
In knee replacement surgery, artificial arthroplasty aims to relieve pain, 

improve function, and restore range of motion in the patients [3]. Anyhow, 

failures still occur after the replacement surgery such as loosening, wear, and 

stress shielding of the implant [4]-[5]. In a previous study, an assessment of 

the population was conducted to show the factors that affected the failure of 

tibial tray performance [6]. Another clinical study demonstrated a tibial plateau 

fracture caused by the patient’s excessive weight [7].  

 To overcome the failure of implants, several studies proved that the 

combination of topology optimization by lattice structure and orthopedic 

implants has shown the enhancement of mechanical behaviour. Peto et al. [8] 

investigated the mechanical behaviour of Hexagonal Prism Vertex Centroid 

(HPVC)  lattice structure which showed that lattice structures have an impact 

in reducing stiffness between implant and bones and minimizing stress 

shielding problems. Guoqing stated that due to excellent biocompatibility and 

good mechanical properties of the bio-fixation (solid and porous) implants, the 

life quality of patients has improved. The implants had been manufactured 

through the Selective laser melting (SLM) process [9]. Besides, this approach 

not only minimizes the implant weight but also facilitates tissue regeneration 

at the implant-bone interface. Triply Periodic Minimal Surfaces (TPMS) are 

common lattice structures used in the optimization of implants such as gyroid, 

diamond, and schwarz. There are two types of TPMS lattice structures which 

are solid-networks and sheet-networks types, whereas the properties for each 

type of lattice structure are also different [10]. Sheet-networks lattice structures 

show better mechanical properties compared to solid-networks lattice 

structures [11]. Yang et al. [12] proposed a gyroid unit cell (TPMS) made of 

Ti6Al4V, whose characteristic shows good strength and high 

manufacturability.  

Yan et al. [13] developed gyroid and diamond TPMS lattices of bone 

implants with a percentage porosity of 80-95% for diamond and gyroid lattice 
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structures comparable to the porosity of trabecular bone which is 50-90%. As 

the value of porosity between implant and bone is almost similar, the modulus 

of porosity can be adjusted to the modulus of trabecular and cortical bone 

which may lead to reducing stress shielding problems. Lorenzo [14] compiled 

the reviews of AM-printed acetabular cups for total hip arthroplasty based on 

porous structure design, limitations of the manufacturing process, and clinical 

outcomes. The main highlight of the study was the comparison of conventional 

manufacturing such as die casting, CNC machining, and injection molding 

with AM printing and the enhancement of complex porous structures. Most 

recently, Limmahakun et al. [15] explored the optimization of orthopedic 

implants by functional gradation of lattice structures. The result showed that 

the mechanical strength gradually increased. According to Al-Ketan outcomes 

[16], these types of TPMS with sheet-network lattices encourage good 

mechanical behaviour, for example, could help improve tibial implant in 

structurally efficient, exhibiting better stiffness and strength to-weight ratio. In 

addition, the Voronoi structure showed that the irregularity of shape 

contributes to good mechanical behaviour which could attain stiffness 

comparable to bone stiffness [17]. Liang et al. [18] had proven trabecular-like 

porous structures with porosities between 48.83-74.28% had excellent 

mechanical performance in terms of elastic modulus and ultimate strength 

which is similar to cancellous bone mechanical behavior. Benedetti et al. [19] 

constructed a study of compressive behavior on nine different Ti6Al4V 

trabecular structures with various values of density, which displayed cross 

structure had the highest strength at constant stiffness compared to other 

structures. 

The purpose of this research is to optimize the tibial tray of the TKA 

implant using a topology optimization approach by obtaining a suitable density 

compared to human bone and weight reduction. Advanced lattice structures 

have been proposed for optimizing the tibial component. The geometrical 

model of the tibial tray was first constructed, and then the Finite Element (FE) 

model was developed. The mechanical behaviour of the tibial tray was 

analysed using Finite Element Analysis (FEA). Specific regions of the tibial 

tray were replaced by three different lattice structures, namely, 1) gyroid, 2) 

diamond sheet structures, and 3) Voronoi strut structure due to stretching-

dominated behavior which exhibited higher fracture strength compared to 

bending-dominated [21]. Their mechanical performance was analysed and 

evaluated by implementing similar boundary conditions and loadings. In order 

to improve further design and mechanical properties, functional gradation of 

lattice structure was applied during the optimization process. 
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Materials and Method 
 

Model designs of total knee implant 
Total knee replacement as shown in Figure 1 consists of three components: (a) 

femoral, (b) tibial insert, and (c) tibial. As for this research, it only focused on 

the mechanical behaviour of the tibial tray as stress shielding always occurs 

between the tibial tray and human bone due to a mismatch of stiffness. The 

tibial tray is available in a variety of complex geometric shapes and surfaces. 

Many factors need to be considered while designing an implant to ensure the 

implantation effectiveness which decreases the incidence of implant loosening. 

The tibial tray design for this investigation was derived from a previous study 

since the design has been established [20]. As indicated in Figure 2a, the tibial 

tray is a stem and the tibial wing to increase the stability of total knee 

replacement and reduce micromotion [21]. The tibial insert hole as in Figure 

2b is functioning as a tibial insert holder. Figure 2c depicts the main geometric 

dimension of the designed tibial tray. 

 

Lattice structure composition 
This study uses the TPMS with gyroid and diamond sheet structures and 

Voronoi strut structures for the optimization phase due to its capability to 

withstand high stress loads and the most prominent structures with increased 

strength. The following equation shows the level-set equations of the TPMS 

gyroid ( 𝜑𝐺) and diamond (𝜑𝐷) geometries [23]-[25]: 

 

 
    
𝜑

𝐺
= sin 𝑥 cos 𝑦 + sin 𝑦 cos 𝑧 + sin 𝑧 cos 𝑥 = 𝑐     (1) 

 

 𝜑𝐷 = cos 𝑥 cos 𝑦 cos 𝑧 − sin 𝑥 sin 𝑦 sin 𝑧 = 𝑐         (2)
    

The FEA Voronoi structure is configured to resemble the bone 

trabecular structure, with structures created in a scattered pattern with varying 

shapes and geometries. The mathematical formula for Voronoi strut structures 

is given below [26] :  

  

 𝑉(𝑝𝑖) = {
𝑝

𝑑(𝑝,𝑝𝑖)
, ≤ 𝑑(𝑝, 𝑝𝑗), 𝑗 ≠ 𝑖, 𝑖, 𝑗 = 1,2, … , 𝑛}       (3) 

 

where V(pi) represents the 3D Voronoi polygon on seed pi, p1……. pn  are the 

definite seeds in 3D space, and d(p and pi) is the usual Euclidean distance 

between p and pi. These structures are modelled by using nTopology (3.40.2). 

Figure 3 shows the workflow of tibial implant optimization with lattice 

structures. Firstly, Figure 3a shows a solid tibial implant and Figure 3b shows 

the region of lattice structure which will be applied on the tibial tray plate by 

topology optimization. As a result, the tibial tray plate contains gyroid lattice 

structures as shown in Figure 3c. 
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Figure 1: 3D model of total knee implant 

 

         
                             (a)                                                       (b) 

 

 
(c) 

 

Figure 2: 3D model of tibial tray: (a) parts of tibial tray [22], (b) top view of 

tibial tray, and (c) geometry of tibial tray (mm) 
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           (a)       (b) 

 

             
           (c)        (d) 

 

Figure 3: Workflow of tibial tray optimization: (a) solid tibial tray, (b) design 

region of tibial tray plate, (c) tibial tray with gyroid structures, and (d) TPMS 

and Voronoi structure per unit cell 

 

For both uniform and non-uniform lattice structures, the size unit cell 

is 3 mm in order to maintain 50% of relative density. On the tibial tray plate, 

for uniform lattice structure, and diamond had a constant sheet thickness of 

480 µm, meanwhile gyroid and Voronoi had a constant sheet thickness of 580 

µm. As for the non-uniform lattice structure, the tibial tray plate had various 

ranges of sheet thickness. The non-uniform lattice for the gyroid structure had 

a functionally graded sheet thickness of 520-1150 µm and the diamond 

structure had a functionally graded sheet thickness of 440-710 µm. Moreover, 

for Voronoi lattice structure the functionally graded sheet thickness is between 

540-850 µm. The porosity ∅ of the lattice structure for both and non-uniform 

lattice structure is 50% determined by Equation 4. According to Arabnejad et 

al. [27], to ensure effective osseointegration the porosity had to be at a 

minimum value of 50%. 

 

 Porosity ∅ =  1 – 
Volume of scaffold

Volume of solid structure
                          (4) 

 

Finite Element Analysis (FEA) 
The FEA is used on the tibial tray to resolve stress that occurs under various 

loading conditions of the optimized tibial tray. The tibial tray is meshed with 
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four nodes of quadratic tetrahedral elements (C3D10) of size 1.1 mm size as 

depicted in Figure 4. The convergence analysis is performed as shown in 

Figure 5 to determine the optimum number of element sizes for each design 

tibial tray, where the number of elements of solid tibial tray is 736, 326 and 

the number of nodes element is 1.12 million.  

 

 
 

Figure 4: Mesh of solid tibial tray 

 

 
 

Figure 5: Convergence graph of the tibial tray for solid and variation 

lattice structures 

 

The boundary conditions that mimic the actual knee joint mechanics are 

used for the simulation. In this case, the fixed support condition is applied at 

the bottom of the tibial stem to prevent any rotation and movement [28]. The 

axial loads of 3100 N are applied on the tibial surface which is based on 

walking movement due to the result of Bergmann et al. [29] who reported the 

knee loads are based on the percentage of weight shown in an average body 
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weight of 75 kg. Figure 6 illustrates the boundary condition setup of the tibial 

tray case. 

 

 
 

Figure 6: Boundary condition of tibial tray 

 

The material selected for this study is titanium alloy of grade Ti6Al4V 

which offers good biocompatibility and corrosion resistance, besides having 

strength and good mechanical properties [30]. Table 1 indicates the properties 

of Ti6Al4V.  

 

Table 1: Mechanical properties of Ti6Al4V [31]-[33] 

 

Mechanical properties  Values 

Density, 𝜌 4.43 g/cm3 

Elastic modulus, E 113.8 GPa 

Poisson ratio, v 0.342 

Yield strength, 𝜎 973 MPa 

Ultimate yield strength, 𝜎ult 1058 MPa 

 

 

Results and Discussion 
 

As reported in previous research, trabecular bone consists a range of 40-95% 

porosity [34]. For this research, the range porosity used is 50% for uniform 

and non-uniform lattice structures as mentioned before to enhance 

osseointegration [27]. Figure 7 illustrates a tibial tray with lattice structure (a, 

c, e) and single unit cell (b, d, f) of three different lattice structures gyroid, 

diamond, and Voronoi. All lattice structures are designed in 3 mm per unit cell 

to maintain the similarity of relative density for each structure which is 50%. 

In the second optimization phase, the relative density of the sheet lattice 

structure is controlled by the changes in wall thickness as illustrated in Figure 

8. Relative density can form a huge difference even though there is the smallest 

change in wall thickness [35]. As an example, the unit cell for the gyroid with 

3 mm has a relative density of 50% for the wall thickness of 0.58 mm, while 
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an increase in the wall thickness of 1.15 mm contributes to the increase in 

relative density of 81%. Moreover, due to the variation of lattice structures 

applied on the tibial tray, it shows the differences in the affected area of stress 

distribution as depicted in Figure 9. Meanwhile, the values of the maximum 

Von Mises stress of each tibial tray model are shown in Table 2. The 

displacement distribution of the tibial tray is shown in Figure 10 and Table 3 

shows the values of the total deformation of the tibial tray. 

 

 
 (a)              (b) 

 

 
 (c)             (d) 

 

 
 (e)             (f) 

 

Figure 7: Gyroid structure; (a) tibial tray with lattice structure, (b) single unit 

cell diamond structure, (c) tibial tray with lattice structure, (d) single unit cell 

Voronoi structure, (e) tibial tray with lattice structure, and (f) single unit cell 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 8: Relative density of various lattice structure in cube size of 50 mm; 

(a) pores size, (b) sheet thickness of lattice structure, and (c) length between 

sheet thickness 
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It is significant to evaluate the occurrence of solid tibial implant stress 

distribution area to further the topology optimization process. Since the force 

distribution is exerted on the tibial tray, it is shown in Figure 9a that the 

maximum stress distribution occurs on the edge of the tibial tray rather than 

the tibial stem area. Therefore, topology optimization can be reduced on the 

tibial tray region to reduce the stress behaviour. The maximum stress escalates 

up to 22.29 MPa on a specific point which does not indicate the total 

mechanical behaviour of the tibial implant. Furthermore, the maximum stress 

is in the allowable range which is below the material yield point as shown in 

Table 2. 

 

       
     (a)       (b)     (c) 

 

       
       (d)        (e)     (f) 

               

       
      (g) 

 

Figure 9: Stress distribution on tibial tray of solid and different lattice 

structures; (a) solid, (b) uniform lattice structure of gyroid, (c) non-uniform 

lattice structure of gyroid, (d) uniform lattice structure of diamond, (e) non-

uniform lattice structure of diamond, (f) uniform lattice structure of Voronoi, 

and (g) non-uniform lattice structure of Voronoi 

 

As for the Voronoi structure, high stress distribution occurs on the edge 

of the tibial tray. The highest strength is shown in the tibial implant which 

contains a Voronoi structure with a value of maximum stress of only 55 MPa 

due to the configuration of lattice structure being more scattered compared to 
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the gyroid and diamond lattice structure. In addition, the tibial implant that 

contains a diamond structure shows a maximum stress value of 86.36 MPa. 

Meanwhile, the tibial implant with a gyroid structure exhibits a maximum 

stress value of 161.85 MPa. The maximum stress increases in the first 

optimization phase because the solid area of the tibial tray is reduced through 

topology optimization of lattice structures which contribute to reducing the 

surface area of the tibial tray. Figures 9b, d, and f show the stress distribution 

for the first phase optimization. 

 

Table 2: Maximum Von Mises stress of tibial tray (MPa) 

 

Design of tibial tray Von Mises stress (MPa) 

Solid 22.29 
Uniform lattice structure 

Gyroid 161.85 
Diamond 86.36 

Voronoi 55.0 

Non-uniform lattice structure 
Gyroid 61.65 

Diamond 49.74 
Voronoi 35.83 

 

All lattice structures applied on the tibial tray region are due to high 

stress that appears on it. In the first optimization phase, stress distribution 

occurs on the lattice area from the edge of the tibial implant to the center of 

the tibial for gyroid and diamond structures as indicated in Figure 10. 

According to [36], as the lattice structures are applied to the hip implant, 

the value of maximum stress increases as compared to the maximum stress of 

the solid component. However, in order to achieve an allowable value of 

maximum stress, further optimization is needed to be performed by varying 

the range of relative density of lattice structure by a functionally graded lattice 

structure. It shows similarities to this research, the maximum stress of the tibial 

tray is increased as the lattice structures are applied on the tibial tray region. 

In comparison to this research, the maximum stress of the first optimization 

phase is still under the allowable material yield point which is 973 MPa. 

However, further optimization needs to be done to achieve comparable 

maximum stress to solid tibial implants and enhance the mechanical 

performance of tibial implants. Furthermore, there are studies that showed the 

combination of solid and lattice structures has improved the mechanical 

performance of tibial implants [37]. 

The second optimization phase continues with functionally graded 

lattice structures. The total relative density of the tibial tray and the relative 

density lattice structure region remain constant. For TPMS-based lattice, a 

sheet network offers good mechanical properties due to a high surface area to 
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volume ratio [38]. On the other hand, the Voronoi structure changes in terms 

of strut thickness. High stress region on the tibial tray is required to increase 

wall thickness compared to low stress region. The differences of stress 

distribution of the first optimization in Figures 9b, d, and f are compared to the 

second optimization in Figures 9c, e, and g which showed a reduction in the 

affected region of lattice structure. Figure 10 shows a close-up of stress 

distribution reduced from the first optimization compared to the second 

optimization. The percentage of maximum stress for gyroid structure reduces 

by about 61.91% from the first optimization to the second optimization while 

diamond structure reduces by 42.40% and Voronoi structure decreases by 

34.85%. This demonstrates that the non-uniform lattice structure is adequate 

to withstand the same load exerted on the tibial tray in the first optimization 

with lower maximum stress. Moreover, as the wall thickness in lattice 

structures increases, it contributes to reducing maximum stress on each 

structure. This is due to the increasing surface area of lattice structures on the 

force exerted area of the tibial tray. According to Zineddine et al. [39], the 

beam thickness of lattice structures affects the amount of maximum stress by 

assuming the increase of cross-sectional surface of beam structures. Even 

though this research uses a triply periodic minimal surface (gyroid and 

diamond) and Voronoi lattice structure, the similar concept of force that affects 

the surface area is comparable.  

 

          
     (a)        (b) 

 

         
     (c)        (d) 

 

Figure 10: Stress distribution of; (a) uniform gyroid lattice structures, (b) 

non-uniform gyroid lattice structures, (c) uniform diamond lattice structures, 

and (d) non-uniform lattice structures 

 

In addition, the deformation result shows that the highest deformation 

among the tibial tray model is the Voronoi structure in uniform lattice structure 

with the value of 0.000497 mm. Meanwhile, the lowest deformation is 

0.000278 mm for non-uniform structure of the diamond. Figure 11 shows the 
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deformation distribution of varies types of lattice structures for uniform and 

non-unifrom sturctures.  

 

Table 3: Total displacement of tibial tray (mm) 

 

Design of tibial tray Maximum displacement (mm) 

Solid 0.000294 
Uniform lattice structure 

Gyroid 0.000339 
Diamond 0.000291 

Voronoi 0.000497 

Non-uniform structure 
Gyroid 0.000290 

Diamond 0.000278 
Voronoi 0.000459 

 

       
       (a)       (b)    (c) 

 

         
      (d)       (e)         (f) 

 

       
       (g) 

 

Figure 11: Displacement distribution on tibial tray of solid and different 

lattice structures: (a) solid, (b) uniform lattice structure of gyroid, (c) non-

uniform lattice structure of gyroid, (d) uniform lattice structure of diamond, 

(e) non-uniform lattice structure of diamond, (f) uniform lattice structure of 

Voronoi, and (g) non-uniform lattice structure of Voronoi  
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All structures demonstrate a decrease deformation distribution for non-

uniform structures as the lattice structure consists of a variation of wall 

thickness. Furthermore, all deformations occur at the top of the tibial tray 

region for all types of lattice structures and solids as demonstrated in Figure 

10. The distribution of force exerted on the top of the tibial region causes 

maximum displacement to occur on the top of the tibial region compared to 

the tibial wing and stem region. 

However, this research had several limitations. The tibial implant with 

different types of lattice structures (gyroid, diamond, and Voronoi) was 

simulated only by static conditions. In order to obtain acceptable data for the 

optimization, further studies need to be done as the walking conditions require 

dynamic motions. According to the literature review, the main parameters used 

in this research are different types of lattice structure and relative density of 

lattice structure which showed a significant effect on the maximum stress 

distribution of tibial implant. However, the effect of porosity was not 

mentioned in this study; thus, it should be considered as it is widely used in 

previous literature reviews. 

  

 

Conclusion 
 

In the present study, topology optimization of three different lattices was 

proposed on the tibial tray to show better mechanical performance. The 

topology optimization applied different lattice structures such as gyroid, 

diamond, and Voronoi which are considered to have superior mechanical 

performance. A lattice structure was applied on high-stress region to maintain 

the optimal mass of the tibial tray. Moreover, the optimization of the lattice 

structure was continued by functional gradation. By this continuity of 

optimization, various ranges of sheet thickness of lattice structure contributed 

to enhancing mechanical behaviour while the stress distribution for all lattice 

structures remained within the allowable range. Above all, it was examined 

that the tibial tray consisting of Voronoi structures showed the best mechanical 

behaviour compared to gyroid and diamond for both phases of lattice 

optimization. By topology optimization, the weight reduction of optimized 

tibial reached up to 40% compared to solid tibial meanwhile the density was 

reduced by about 48%. As for future work, the fabrication of a tibial implant 

by using selective laser melting and the evaluation of mechanical behaviour 

should be measured and compared between simulation and experimental 

values. 
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