Universiti Teknologi MARA

Shape-Based Segmentation of Nucleus Cell

Nor Azira Bt Mohammed Ariffin

Thesis submitted in fulfilment of the requirements for the Bachelor of Computer Science (Hons) (Multimedia Computing)

Faculty of Computer and Mathematical Sciences

ACKNOWLEDGEMENT

Alhamdulillah thanks Allah for giving me inspiration and knowledge for finishing this proposal.

I would like to give my appreciation especially for my supervisor Assoc. Prof. Dr. Nursuriati Jamil for guiding and helping me to finish this proposal patiently.

Special thanks also go to Mr. Mohd. Yunus Mohd. Yusof, Mdm. Suzana Baharudin & Mr. Wan Ya Wan Husin for sharing their intellectual inspiration and constructive criticism to complete this proposal.

Last but not least, thanks for Mr. Zahid for sharing some knowledge with me. Thanks to all my lecturers and colleagues for their support and encouragements and all possible help.

Thank you.

TABLE OF CONTENTS

Contents

LIST	OF TABLES	⁄iii		
LIST	OF FIGURES	ix		
LIST	LIST OF ABBREVIATIONS OR GLOSSARY xi			
СНАР	CHAPTER 1 1			
INTRODUCTION				
1.1	Background	. 1		
1.2	Problem Statement	. 2		
1.3	Objectives	. 2		
1.4	Scope of Project	. 3		
1.5	Significant Benefits	. 3		
CHAPTER 2				
LITERATURE REVIEW4				
2.0	Introduction	. 4		
2.1	Image Segmentation	. 4		
2.2.1	Discontinuity	. 4		
2.2.2	Similarity	. 6		
2.2	Basic Image Processing	. 6		
2.2.1	Morphological Operators	. 7		
2.2.2	Statistical Operators	. 7		
2.3	Shape Representation	. 8		
2.4	Related Research	. 9		
2.5	Summary	12		
CT A D	THAPTER 3			

METH	IODOLOGY	13
3.0	Introduction	13
3.1	Methodology	13
3.2	Input Image	15
3.3	Grayscale Conversion	15
3.4	Shape Feature Extraction	15
3.5	Image Segmentation	16
3.6	Hardware & Software Requirement	16
3.6.1	Hardware Requirement for Development	16
3.6.2	Software Requirement for Development	17
3.6.3	Hardware Requirement for End User	17
3.6.4	Software Requirement for End User	17
CHAPTER 4		
PROJECT DISCUSSION		18
4.0 Introduction		18
4.1 Input Image		
4.2 Threshold		
4.3 Image Segmentation		21
4.4 Results		22
CHAPTER 5		24
CONCLUSION		24
5.0 Conclusions		24
5.1 Co	nstraint	24
5.2 Future Research		
REFERENCES2		
APPENDICES		

ABSTRACT

This thesis presents shape-based segmentation of nucleus cell. a Immunohistochemistry (IHC) is commonly used by pathologists to detect specific types of cells. The use of IHC has found for many areas of applications especially in prostate cancer diagnosis. Commonly, diagnostic decisions are made by assessing sample cells. Pathologists will evaluate the cells from diverse diagnostically important parameter including number, size, shapes and textures of cells. However, the cell may be clustered and the image may have a lot of noise that make the diagnosis hard to be precise and accurate. Therefore, the following processes are being applied to segment the abnormal cell. The first step involves the converting RGB color image to gray scale color. The second step involves applying threshold to the image. The third step involves shape feature extraction where the shape is defined by area, compactness and eccentricity. The method was applied to 20 abnormal cell images and the result shows the segmented of abnormal cell.