

EVALUATION ON ENERGY STORAGE CAPACITY PERFORMANCE FOR HYBRID PV/DIESEL SYSTEM IN SMK MATUPANG JAYA RANAU, SABAH

SITI MAISARAH ABD KARIM

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA, MALAYSIA

EVALUATION ON ENERGY STORAGE CAPACITY PERFORMANCE FOR HYBRID PV/DIESEL SYSTEM IN SMK MATUPANG JAYA RANAU, SABAH

This thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Hons) Electrical FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

SITI MAISARAH BINTI ABD KARIM Faculty of Electrical Engineering Universiti Teknologi Mara 40450 Shah Alam Selangor Darul Ehsan

ACKNOWLEDGEMENT

In the name of Allah, The Compassionate, The Merciful, praise is to Allah, Lord of the Universe, Peace and Prayers be upon His final Prophet and Messenger. In the name of Allah, God the Almighty, I would like to pay my gratitude for providing me strength, patience, ability and guidance to accomplish this project successfully

Firstly, my deepest appreciation goes to my parents and family for their love, understanding and encouragement, also for being source of inspiration. I dedicate this piece of work to all of them. Secondly is for my beloved supervisor, Dr Muhamad Nabil Hidayat for his invaluable guidance, assistant, support, encouragement and advice. He has been trying his best in accompanying and guiding me to understand this project correctly and who has given me lots of motivation to make sure I can complete this Final Year Project successfully.

Credit also goes to my classmates and friends who always share the ideas, give their guidance, comments and encouragement in development of this thesis. To those who contribute so much effort, whether direct or indirect, I would like to express my highest appreciation. With all my sincere feelings, I pray to Allah that all of you will be given great rewards in this world and Hereafter. Thank you.

ABSTRACT

Combination of Solar Photovoltaic (PV) system with batteries and diesel generators can guarantee high supply and meet the load for about 100% availability but in cloudy weather (weak irradiance), this strategy requires large storage capacity. State of Charge (SOC) is a fundamental parameter need for the battery, which measures energy left in a battery while Depth of Discharge (DOD) determine the fraction of power that can be withdrawn from the battery. The accuracy of estimation SOC and DOD battery can be important and premise in designing battery management system. This paper has presents an efficient SOC to match limit setting with respect to the solar irradiance and load condition. At the same time, the special consideration is based on analyzing the number of operational hours of diesel generator and lifetime of the battery

TABLE OF CONTENT

TITLE	PAGE
APPROVAL	ii
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT TABLE OF CONTENTES	V
TABLE OF CONTENTS LIST OF FIGURES	vi
LIST OF FIGURES LIST OF TABLES	viii
LIST OF TABLES LIST OF ABBREVIATIONS	x xi
CHAPTER 1: INTRODUCTION	1
1.1 Background Of Study	1
1.2 Problem Statement	5
1.3 Objectives	5
1.4 Scope Of Works	5
1.5 Outline Of Thesis	6
CHAPTER 2 : SYSTEM CONFIGURATION AT SMK MATUPANG JAYA	11
2.1 Introduction	11
2.2 Overall System Operation at SMK Matupang Jaya	12
2.3 Introduction To Solar Battery	14
2.3.1 Lead Acid Battery	16
2.4 Types Of Lead Acid Battery	18
2.4.1 Flooded Lead Acid Battery	18
2.4.2 VRLA Battery	18
2.5 Potential Problems With Lead Acid Battery	20
2.6 Characteristic Of Battery	22
2.6.1 Battery Capacity	22
2.6.2 Discharging Rate	23