UNIVERSITI TEKNOLOGI MARA

RAINFALL – LANDSLIDE POTENTIAL MAPPING USING REMOTE SENSING AND GIS AT ULU KELANG, SELANGOR

NORAISYAH BT TAJUDIN

Dissertation submitted in partial fulfilment of the requirements for the degree of

Master of Science in Telecommunication and Information Engineering

Faculty of Electrical Engineering

July 2017

ABSTRACT

Malaysia has experienced many landslides that have cause a numbers of death, destructiveness, various losses to human living and immense direct and indirect economical losses. The tragic Highland tower landslide incident in Ulu Kelang, Selangor on 1993 is considered to be the landmark landslide that creates public awareness about the dangerous of landslides. Ulu Kelang, Selangor is known in Malaysia as one of the most landslide prone area. Located in the country which near the equator line with tropical climates, Ulu Kelang receives averaging 2,400mm annually rainfall. Therefore rainfall is one of the main triggering factors that cause landslide event. The aim of this project is to conduct analysis of the relationship between rainfall and landslide occurrence in Ulu Kelang, Selangor. Tropical Rainfall Measuring Mission (TRMM) satellite precipitation data have been used to analyze rainfall pattern, rainfall intensity and accumulated rainfall to establish the landslidetriggering rainfall threshold. While the SPOT-5 imagery is used to identify the land used mapping in Ulu Kelang area for years 2005 and 2009 using ERDAS Imagine 2014. The potential landslide area have been mapped using GIS application by integrated four main factors included rainfall threshold characteristic, slope gradient, geology and land used. The results indicate the potential landslide with five different indexes: very low, low, medium, high and very high; were verified using previous studies and historical landslide occurrence in year 2002 until 2009.

ACKNOWLEDGEMENT

In the name of Allah SWT, most Gracious, most Compassionate.

Peace upon Prophet Muhammad SAW

My highest appreciation to my supervisor, Assoc. Prof. Dr. Norsuzila Ya'acob for her guidance, inspiration and continues support throughout the completion of this research.

I also would like to express my gratitude to the staff of Remote Sensing Malaysia Agency (ARSM), Department of Survey and Mapping Malaysia (JUPEM), Department of Mineral and Geoscience Malaysia (JMG) and Ampang Jaya Municipal Council (MPAJ) for their generosity in assisting and providing the required information towards completing this research.

The special thanks to my friends for their technical skill, knowledge and advice in this project. Deepest thanks and appreciation to my beloved husband, children and family for their understanding and support. Thank you for being there for me.

TABLE OF CONTENTS

			Page	
DEC	LARAT	ION	i	
ABS	ΓRACT		ii	
ACK	NOWLI	EDGEMENT	iii	
TAB	LES OF	CONTENTS	iv	
LIST	OF FIG	GURES	vii	
LIST	OF TA	BLES	xi	
LIST OF ABBREVIATIONS				
1	INT	RODUCTION		
	1.1	Background	1	
	1.2	Problem Statement	3	
	1.3	Objectives of study	5	
	1.4	Scope and Limitation	5	
	1.5	Significance of study	6	
	1.6	Thesis Organization	6	
2	LITE	ERATURE REVIEW		
	2.1	Introduction	8	
	2.2	Landslide	8	
	2.3	Contributory and Triggering Factors of Landslide.	10	
	2.4	Rainfall	13	
		2.4.1 Rainfall Induced Landslides.	13	

		2.4.2 Rainfall Threshold	14
	2.5	Remote Sensing	17
	2.6	Geographical Information System (GIS)	19
	2.7	Summary	20
3	MET	HODOLOGY	
	3.1	Introduction	21
	3.2	Description of area of interest.	22
	3.3	Data Collection	25
		3.3.1 Tropical Rainfall Measuring Mission (TRMM)	
		Satellite Data	25
		3.3.2 SPOT-5 Satellite Images.	27
		3.3.3 Contour Map and Geology Topography	28
	3.4	Methodology Structure	29
	3.5	Rainfall analysis	30
		3.5.1 Rainfall Pattern Analysis	30
		3.5.2 Rainfall Threshold Analysis	31
	3.6	Contributing Factor of Landslide Occurrence	31
		3.6.1 Land Used	31
		3.6.2 Slope gradient and rock geology.	39
	3.7	Geographical Information System (GIS) analysis	41
	3.8	Summary	44