LOAD FLOW PROGRAMMING BY USING C++

SAIFUL AZMIN BIN ABDUL WAHID

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITY TEKNOLOGI MARA MALAYSIA

ACKNOWLEDGEMENT

In the name of ALLAH

Most Gracious and Most Merciful

I would like to express my gratitude and sincere thanks to my supervisor, Associate Professor Muhammad Bin Yahya allowing the chance to work under his guidance, opinion and full support in completing this thesis. Without them this work might not be done successfully.

To my parent and family as well to my friends and colleague, I would like to express my gratitude for their contribution, moral support and encouragement during the completion of this project.

Saiful Azmin Bin Abdul Wahid

Faculty of Electrical Engineering
Universiti Teknologi MARA (UiTM)
Shah Alam

March 2002

LIST OF FIGURES

Figure No.	Description	Pages
Figure 3.1	Overall Load Flow Programming Flow-chart	10
Figure 3.2	Three Bus System Diagram	12
Figure 3.3	Output Result of Load Flow Software Used In	19-22
	Faculty Of Electrical Engineering	
Figure 4.1	Bus Data Input	23
Figure 4.2	Line Admittance Input	24
Figure 4.3	Admittance Matrix Output	25
Figure 4.4	Data Input In Detailed Output	26
Figure 4.5	Bus Data Calculation Process Output	27
Figure 4.6	The Mismatch Calculation Output	28
Figure 4.7	The Final Results Output	29
Figure 5.1	15 Bus System One Line Diagram	32
Figure 5.2	The Output Results From MATLAB	36-42
Figure 5.3	Output Result of Load Flow Software Used In Faculty	43
	Of Electrical Engineering	

ABSTRACT

This paper is to represent the title of the load flow programming by using C++. The load flow or in another name as power flow is the solution for the normal steady-state operating conditions of an electric power system. [1] The method of load-flow used is Fast-Decoupled Load Flow Method. This theses concentrates only on the construction of a load flow program by using the additional-automated tool which enable the calculation been done as quickly as possible. The tool was a high-level computer language which been chosen to be a software C++.

TABLE OF CONTENTS

Acknowledgement		i
List of Figures		ii
Abstract		iii
Table of Content		iv
	CHAPTER 1	
	INTRODUCTION	
1.1	Introduction	1
1.2	Project Implementation	2
	CHAPTER 2	
	LOAD FLOW STUDIES	
2.1	Introduction	4
2.2	Modelling	4
	2.2.1 Transmission	4
	2.2.2. Transformer	4
	2.2.3. Alternators	5
	2.2.4. Compensation	5
	2.2.5. Load	5
	2.2.6. Swing Bus	5
2.3	Iteration Process	5
2.4	The Bus Power Formulae	
2.5	Admittance Matrix	
2.6	Types Of Buses	
2.7	Load Flow Method	9
	2.7.1 Nauton Panhson Fast Decouple method	9