STEP-UP THREE PHASE DOUBLE CONVERTER

This report is presented in partial fulfillment for the award of the

Bachelor of Engineering (Hons.) Electrical

UNIVERSITI TEKNOLOGI MARA (UITM)

NOR AZIRA BINTI MOHD SALIMAN
FACULTY OF ELECTRICAL ENGINEERING
UNIVERSITI TEKNOLOGI MARA
40450 SHAH ALAM
SELANGOR, MALAYSIA
JULY 2013

ACKNOWLEDGEMENT

All praise to Allah, the Almighty, the Benevolent for his guidance and blessing for giving me a good health, strength, patient and inspiration in completing this thesis. With his blessing, this finally accomplished.

First and foremost, I would like to express my genuine gratitude to my supervisor, Mr Zulkifli Othman, who has been my source of inspiration and guiding me. Without your guidance it will be hard to get through, polish up my knowledge and broaden my skill during this project is carried out. All of the generous support and encouragement given was utmost importance and always be remembered.

Not to forget, my beloved parents 1

and

for the understanding, endless love, prayers and moral support, were deeply appreciated. Dear siblings, thank you for your persevering support and encouragement. Besides that, I also would like to express my heartily gratitude to my fellow friends who were willing to give opinions and critics to improve my research. Last but not least, to all parties who was involved indirectly in helping me during making this thesis.

Thank you and may Allah blesses all of you.

ABSTRACT

This project is dealing with AC-DC-DC three phase converter. The first part consists of double rectifier (AC-DC) involving with twelve ideal switches by applying pulsewidth modulation (PWM) as switch control. The second part consists of step-up/boost converter (DC-DC). Simulation studies have been carried in MATLAB/SIMULINK. The results presented the performance of overall system in terms of total harmonic distortion (THD).

TABLES OF CONTENTS

Titles	Pages
Approval	iii
Declaration	iv
Dedication	v
Acknowledgments	vi
Abstract	vii
Table of Contents	viii
List of Figures	X
List of Tables	xii
List of Symbols and Abbreviations	xiii
CHAPTER 1: INTRODUCTION	
1.1. INTRODUCTION	1
1.2. OBJECTIVES	2
1.3. SIGNIFICANCE OF STUDY	2
1.4. SCOPE OF WORK	2
1.5. FLOW CHART	2
1.6. THESIS ORGANIZATION	4
CHAPTER 2: LITERATURE REVIEW	5
2.1. PULSE WIDTH MODULATION	5
2.2. RECTIFIER	7
2.2.1. SINGLE PHASE CONTROLLED FULL WAVE RECT	ΓIFIER8
2.2.2. THREE PHASE CONTROLLED DOUBLE RECTIFIE	R11
2.3. DC CHOPPER	13
2.3.1. STEP-DOWN CONVERTER	13
2.3.2. STEP-UP CONVERTER	15
2.3.3. BUCK-BOOST CONVERTER	16
2.4. TOTAL HARMONIC DISTORTION	18

CHAPTER 3: METHODOLOGY	19
3.1. BLOCK DIAGRAM	19
3.2. CIRCUIT TOPOLOGY	20
3.2.1. PULSE WIDTH MODULATION	20
3.2.2. THREE PHASE DOUBLE CONVERTER	21
3.2.3. STEP-UP CONVERTER	22
3.2.4. STEP-UP THREE PHASE DOUBLE CONVERTER	23
CHAPTER 4: SIMULATION RESULTS AND DISCUSSION	24
4.1. PULSE WIDTH MODULATION	24
4.2. THREE PHASE CONVERTER	26
4.3. STEP-UP THREE PHASE CONVERTER	28
4.4. EFFECT OF MODULATION INDEX	29
CHAPTER 5: CONCLUSION AND RECOMMENDATION	35
5.1. CONCLUSION	35
5.2. RECOMMENDATION	36
REFERENCES	37