UNIVERSITI TEKNOLOGI MARA

PREDICTION OF WELD BEAD GEOMETRY OF SMALL-WIRE SUBMERGED ARC WELDING IN 1G POSITION

MOHAMAD FARUQI BIN MOHAMED

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Mechanical Engineering

May 2018

ABSTRACT

Small-wire submerged arc welding is a welding process where the weld pool is submerged in granulates flux. It is different with the conventional SAW by the choice of filler wire which is 1.2mm. The most common problem encountered in small-wire SAW welding process is that the difficulty to determine the correct welding parameter for desired output bead geometry. The common approach is selection by trial and error can lead to waste of time, cost and energy. Therefore, in order to solve the problem a system was developed which can predict the weld bead geometry. The robotic welding ABB IRB 12400 was employed to perform small-wire SAW on mild carbon steel in 1G position. More than 204 samples, size 25mm x 500mm x 9mm thick were welded by the robot with welding current, voltage and travel speed in range 200-360 ampere, 22-36 volt and 4-18mm/s respectively but only 99 samples were accepted base on their good quality. Each sample was tagged with welding parameter, numbered, photographed on the profile, sectioned, polished and etched to observe the macrostructure. The weld bead geometry was measured and from the data the correlation between heat input and bead geometry was analysed based on the best the trend-line which is polynomial equation. It was found that when the data of welding samples were grouped according to bead penetration into 5 groups the accuracy of bead geometry prediction has Mean Absolute Deviation and maximum deviation that less than 1.0mm. Thus this experiment had produced an accurate system to predict the weld bead geometry and welding parameter, before welding, without trial and error, and experimentally verified by a large number of welded samples.

ACKNOWLEDGEMENT

First and foremost, all praises to Allah SWT for His Merciful and Guidance, it is by His will that this thesis able to complete. A million thanks dedicated to my beloved supervisor Dr Nor Hafiez Mohamad Nor for his continuously support and guidance from the start until the end of this research.

I wish to express my gratitude to my former supervisor Mr. Abdul Ghalib Tham for his technical knowledge and expertise in creation of accurate prediction for GMAW, FCAW and SAW. Despite his retirement, he continues to supervise this project until completion.

I am also grateful to Nik Mohd Baihaki and several FYP mechanical engineering students and staffs of welding and material laboratory of FKM, UITM, who had performed the robotic welding, cut the samples, polished and etching, tagged and photographed the welding samples. Last but not least, to my parent, my family and my friends for their support and prayer.

TABLE OF CONTENT

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENT	vi
LIST OF TABLES	viii
LIST OF FIGURES	X
LIST OF PLATES	xii
LIST OF ABBREVIATIONS	xiii
CHAPTER ONE: INTRODUCTION	1

CHAPTER ONE: INTRODUCTION	I
1.1 Research Background	1
1.2 Problem Statement	3
1.3 Objectives of Study	3
1.4 Scope of study	4
1.5 Limitation of study	4
1.6 Significance of Study	5

CHAPTER TWO: LITERATURE REVIEW	6
2.1 Introduction	6
2.2 Introduction of Welding Process	6
2.3 Introduction of Small-Wire Submerged Arc Welding	12
2.4 Selection of Base Metal	14
2.5 Selection of Welding Consumables	16
2.6 Heat Input	17
2.7 Welding Parameter	19
2.7.1 Welding Current	20
2.7.2 Welding Arc Voltage	21
2.7.3 Welding Travel Speed	21

2.7.4 Electrode Stick-Out	23
2.7.5 Wire Diameter	24
2.7.6 Torch Angle	24
2.8 Robotic Welding	26
2.9 Welding Positions and Joint	27

CHAPTER THREE: RESEARCH METHODOLOGY	30
3.1 Permeable	30
3.2 Identification and Tabulation of Welding Parameters	32
3.3 Preparation of Materials	33
3.4 Preparation of Consumables	35
3.5 Preparation Robotic Welder	35
3.6 Visual Inspection	36
3.7 Cutting Process	37
3.8 Grinding and Polishing Processes	38
3.9 Macro-Etching Process	39
3.10 Coating Process	40
3.11 The Method of Analysis	40

CHAPTER FOUR: RESULTS AND DISCUSSI	ON 41
4.1 The Importance of Correct Bead Geometry and	Welding Parameter 42
4.2 Cross Section of Weld Bead Samples	43
4.3 X-Ray Image of Weld Bead Samples	43
4.4 Data of Weld Bead Geometry of Small-Wire SA	AW in 1G Position 44
4.5 Data of Weld Bead Geometry of Small-Wire SA	AW in 1G Position with Grouping
of Bead Penetration	50

CHAPTER FIVE: CONCLUSION AND RECOMMENDATION	
REFERENCES	65
APPENDICES	74
AUTHOR'S PROFILE	99