
 

 
 

e-ISSN: 0128-1089 

Available online at 
https://myjms.mohe.gov.my/index.php/SMRJ/index 

 Social and 
Management 

Research Journal  Social and Management Research Journal 20(2) 2023, 81 – 96. 

 

https//doi.org/10.24191/smrj.v20i2.24317 ©Authors, 2023 

The effects of environmental pollution on food security in 
Malaysia 

Irlisuhayu Mohd Ramli1, Nor Azira Ismail2*, Noor Zahirah Mohd Sidek3 

 1,2,3Faculty of Business Management, Universiti Teknologi MARA, 08400 Merbok, Kedah, Malaysia 
 

ARTICLE INFO  ABSTRACT 
Article history: 
Received 31 July 2023 
Revised   11 August 2023 
Accepted 23 August 2023 
Online first 7 October 2023 
Published 31 October 2023 
 

 Environmental pollution has emerged as a critical global challenge, 
significantly affecting various aspects of human life, including food 
security. This research paper investigates the effects of environmental 
pollution on agricultural output (a proxy for food security) in Malaysia 
from 1990 to 2020, utilising the Autoregressive Distributed Lag (ARDL) 
method. The results obtained from the bounds cointegration testing 
approach provided strong evidence supporting the existence of a long-
term relationship among Methane emissions in the energy sector 
(thousand metric tons of CO2 equivalent) (CH4), Carbon dioxide 
emissions (metric tons per capita) (CO2), Nitrous oxide emissions in the 
energy sector (thousand metric tons of CO2 equivalent) (N2O), GDP, 
population, index of agricultural total factor productivity, and 
agricultural output. Estimation of long-run and short-run ARDL with 
diagnostic and model stability reveals that there is a positive correlation 
between the index of agricultural total factor productivity (TFP) and 
agricultural output in Malaysia in all four of the models analysed. The 
discoveries illuminate the possible mechanisms by which environmental 
pollution affects food security in Malaysia, offering valuable insights to 
policymakers and stakeholders for crafting effective strategies toward 
sustainable development. By uncovering the implications of 
environmental degradation on food availability, access, and nutritional 
quality, the study highlights the urgency of addressing environmental 
challenges to ensure long-term food security for the Malaysian 
population. Moreover, the study can serve as a basis for formulating 
sustainable policies that promote resource conservation, waste 
management, and eco-friendly practices in the agricultural and industrial 
sectors, fostering a harmonious coexistence between economic 
development and environmental preservation.  
 

Keywords: 
pollution 
food security 
agricultural sector 
ARDL  
Malaysia 
 
DOI: 
10.24191/smrj.v20i2.24317 

 

  

                                                           
2* Corresponding author. E-mail address: noraz788@uitm.edu.my  



82 Irlisuhayu Mohd Ramli  et al / Social and Management Research Journal (2023) Vol. 20, No. 2 

https//doi.org/10.24191/smrj.v20i2.24317 ©Authors, 2023 

INTRODUCTION 

According to the International Strategy for Disaster Reduction (2004), environmental pollution is defined 
as "the reduction of the environment's capacity to meet social and ecological objectives and needs”. 
Environmental pollution emerged as a critical global challenge in recent decades, having profound effects 
on various aspects of human life. Among the sectors most vulnerable to environmental pollution, agriculture 
stands at the forefront due to its heavy reliance on natural resources (Çetin et al., 2020; Harizanova-Bartos 
& Stoyanova, 2018; Kwakwa et al., 2022; Naghavi et al., 2022). This research article aims to explore the 
effects of environmental pollution on agricultural production as a proxy for food security, shedding light 
on the consequences and underlying mechanisms that drive this interaction. 

In Malaysia, there is very little study on the effects of environmental pollution on food security 
compared to the effects of food security on environmental pollution. According to Ashraf and Javed (2023) 
due to the quick depletion of the earth's resources, food security can result in considerable environmental 
deterioration. As a result, it may be to blame for a sizable portion of Green House Gases emissions, a decline 
in biodiversity and soil fertility, and a water shortage. One study by Subramaniam and Masron (2021), also 
shows that the level of environmental degradation tends to be higher with a higher level of food security. 
Moreover, according to the Generalized Method of Moments GMM system's findings, increased carbon 
emissions due to food security will lower environmental quality (Ashraf & Javed, 2023). This showed that 
in Malaysia, many past studies only focused on the effects of food security on environmental pollution 
rather than the effects of environmental pollution on agricultural output as a proxy for food security. Hence, 
this study intends to investigate the effects of environmental pollution on food security in Malaysia, not 
vice versa. 

Environmental pollution, all of which is aggravated by human activity such as industrialisation, 
urbanization and unsustainable farming practices, involves a wide range of processes, including 
deforestation, soil degradation, water pollution or climate change. These activities lead to the gradual 
deterioration of natural ecosystems and the depletion of vital resources, thereby jeopardizing the productive 
capacity of agricultural systems worldwide. Climate change causes crop damage, low productivity, and 
high production costs that lead to losses in farmers’ income, a high poverty level, high inequality, and 
finally a reduction in farmers’ active involvement (Alalade et al., 2021; Alam et al., 2018; Maja & Ayano, 
2021; Pilo et al., 2021; Sallawu et al., 2022). 

The impact of environmental pollution on agricultural production is comprehensive and demonstrated 
in several ways. Firstly, soil pollution resulting from erosion, nutrient depletion, and chemical pollution 
reduces the fertility and structural integrity of soils, diminishing their ability to support crop growth. 
Consequently, agricultural yields decrease, posing significant challenges to global food production. 
Moreover, climate change has changed the temperature and precipitation patterns, resulting in increased 
extreme weather events such as droughts, floods or heat waves due to greenhouse gas emissions and 
deforestation. These climate-induced disturbances disrupt agricultural activities, affecting crop cycles, 
livestock health, and overall farm productivity. Climate scientists have predicted that, by 2030, about a 
quarter of Malaysia's population will be displaced because of climate change  (Sahani et al. (2022).  

The impact of the decline in agricultural production because of Environmental Pollution is much wider 
than farm boundaries, and there are serious implications for food security. According to the United Nations 
Committee on World Food Security, food security is defined as everyone, at all times, having physical, 
social, and economic access to enough, safe, and nourishing food that satisfies their food choices and dietary 
needs for an active and healthy life. Food security has four components namely availability, accessibility, 
utilization, and stability (Food and Agriculture Organization Statistics, 2018). As the global population 
continues to rise, maintaining a sufficient and stable food supply becomes a vital concern. Projections from 
United Nations (2022) suggest that by 2030, the world's population could reach approximately 8.5 billion 
individuals, a figure expected to surge to 9.7 billion by 2050. Moreover, these projections indicate a peak 
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population of 10.4 billion people during the 2080s, which is projected to remain relatively stable until the 
year 2100. 

Environmental pollution undermines the ability of agricultural systems to meet this demand, 
heightening the risk of food shortages, price volatility, and malnutrition. Particularly in vulnerable regions 
with limited alternative livelihood options, such as rural areas in developing countries, the consequences of 
reduced agricultural production can be devastating, leading to increased poverty, social unrest, and 
migration. 

This study will utilise Autoregressive Distributed Lag (ARDL) method to analyse the effects of 
environmental pollution on agricultural production as a proxy for food security. Through an examination 
of empirical data, valuable insights into the interactions between environmental factors, agricultural 
practices, and food production dynamics will be addressed. Ultimately, the findings of this study will 
contribute to informed decision-making processes and pave the way for the development of resilient and 
sustainable agricultural systems in the face of environmental challenges. The paper is organized as follows: 
Section 2 on literature review, Section 3 on methodology, Section 4 on results and discussion, and Section 
5 on conclusions and policy implications. 

LITERATURE REVIEW 

Environmental pollution has emerged as a critical factor that significantly impacts global food security. 
Numerous studies have highlighted the complicated effects of pollution on various dimensions of food 
production, distribution, and access. The ability of an economy's agriculture sector to feed the world's 
rapidly expanding population currently ranks among its greatest difficulties. However, ongoing 
environmental deterioration poses a significant threat to agricultural production (Sun et al., 2017). 
Environmental pollution, particularly the emission of greenhouse gases (GHG), contributes to climate 
change, leading to shifts in temperature and precipitation patterns. Studies by the Intergovernmental Panel 
on Climate Change (2018) and Rosenzweig et al. (2020) have shown that climate change-induced extreme 
weather events, such as droughts and floods, adversely impact agricultural production. Changing climatic 
conditions disrupt planting schedules, alter crop suitability zones, and increase the incidence of pests and 
diseases, further challenging agricultural production. 

Keeping up with agricultural production to feed the world's constantly expanding population is one of 
the biggest difficulties (Tan et al., 2022). Everyone on Earth is witnessing unprecedented heat waves, severe 
droughts, and rising greenhouse gas levels (Ramzan et al., 2022). The unrelenting increase in greenhouse 
gases, including methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), is having a severe impact 
on water and land resources as well as the pattern of rainfall and temperature (Alexandratos & Bruinsma, 
2012). Additionally, the environment, human health, and agricultural output are all clearly negatively 
impacted by CO2 emissions. Industrialisation is fuelled by economic growth, which in turn accelerates the 
extraction of natural resources. According to de Haas and Andrews (2022), environmental sustainability 
may be negatively impacted by most of the natural resource use associated with industrialisation, 
agriculture, mining, and deforestation. 

Combating a large amount of released GHG emissions is a critical issue on the battlefield of the 
environment. Fossil fuels like coal, natural gas, and oil are burned in industrial, commercial, and other 
operations, which contaminate the air and water. These fires contribute to the growing season's increased 
warmth, which has an impact on agricultural output and food security (Ramzan et al., 2022). Finding a way 
to reduce pollution levels without sacrificing agricultural yield is the biggest problem facing the global 
ecosystem. Environmental change is expected to have a significant ripple impact; however, it will vary by 
region and crop (Ramzan et al., 2022). Several studies have found that environmental pollution harms 
agricultural production as well as development. According to Kwakwa et al. (2022), emissions from the 
transportation, industrial, and other sectors have a negative impact on the development of Ghana's 
agriculture. Together with other explanatory factors, carbon emissions often contribute more to changes in 
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agricultural development over time. Based on the research done by (Dong & Wang, 2023), in many nations 
with varying levels of development, pollution levels, and industrial systems, air pollution has a negative 
influence. The link between fine particulate matter and agricultural total factor productivity (TFP) is 
moderated by temperature, according to their study's findings. 

Tan et al. (2022) used a sample of 350 observations for the European Union countries during 2009–
2018 and found environmental deterioration as one of the most pressing issues facing modern society and 
its connection to agriculture production. To increase the effectiveness of pro-environmental policies, the 
causes of environmental issues that affect agriculture as well as the economic and social drivers must be 
examined simultaneously. An increase in the forms and types of environmental degradation is brought on 
by the rise in consumer goods demand in a setting of high interdependence between nations. 

 Additionally, the random forest analysis supports the notion that one of the most significant drivers of 
agricultural output is air pollution. A major threat to the development of worldwide agricultural production 
is air pollution. For agricultural sustainability and world food security, global efforts should be made to 
improve air quality.  

According to projections, the ongoing rise in carbon dioxide (CO2) emissions will have a significant 
impact on the climate system, with disastrous results that would affect all aspects of society (Rehman et al., 
2022). However, a decrease in global temperature has been linked to a reduction in carbon dioxide 
emissions, which will benefit agricultural production whereas the growing seasons, soil moisture levels, 
and yield quality will all benefit from an ideal temperature regime (Subramaniam et al., 2020). Additionally, 
the price of food will reduce to the extent that greater food production is caused by improved environmental 
quality.  

In order to ensure sustainable development and to reduce the negative effects of climate change, it has 
become a global issue to reduce CO2 emissions and improve environmental quality. According to this 
paradigm, figuring out what influences CO2 emissions is crucial for choosing the best solutions to improve 
environmental quality (Churchill et al., 2020). Environmental degradation is inevitable if the functional 
relationship between natural resources and modern development processes cannot be prevented. 

METHODOLOGY 

For a successful empirical study, it is crucial to ascertain the stationarity properties of the variables under 
consideration. To achieve this, unit root tests developed by Dickey and Fuller (1979) and Phillips and 
Perron (1988) can be employed to assess the stationarity status of the variables. If these tests confirm that 
the variables are stationary at either level I(0) or first difference I(1), the investigation can proceed 
accordingly. As suggested by Pesaran and Smith (2001), it is crucial to underline that none of the variables 
should be in the second difference. 

The long-term association between variables was investigated in this work using the Autoregressive 
Distributed Lag (ARDL) bound testing approach suggested by Pesaran et al. (2001). If Fcal > Ftab is true, 
then there is a long-run association between the variables. If Fcal < Ftab, then there is no long-run 
association between the variables, but the cointegration between the variables is inconclusive. Only if the 
requirement of Fcal > Ftab is met may the study continue. 

In this study, we utilised the ARDL bound testing method, which offers various advantages compared 
to traditional techniques. One of the benefits is that the ARDL estimation can address problems related to 
serial correlation and determine the right lag order by considering both the short and long-term connections 
between the selected variables via auto-regressive lags and error correction (Xiong et al., 2022). Moreover, 
the ARDL method is known to be more efficient when dealing with a small sample size (Villanthenkodath 
et al., 2021) and suitable for variables that are nonstationary or have mixed integration order (Ullah et al., 
2022). The bound test method assumes that there is long-term cointegration among the variables of interest. 
Additionally, an ECM can be established through linear transformation, which incorporates both short and 
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long-term dynamics in the model without omitting any data (Xiong et al., 2022). The ARDL bounds test 
equation is as follows: 
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Equation (1) includes the dependent variable denoted by QAt, explanatory variables represented by X, 
and the first difference indicated by Δ. A long-run cointegration among variables exists in a specified model 
only if the null hypothesis of β7 =  β8 =  β9 =  β10 =  β11 =  β12 =  β13 =  β14 = 0  is rejected by the 
Wald test.  

As depicted in equation (1), after confirmation of cointegration association among variables through 
the bound testing approach, the short and long-run coefficients of equation (3) are estimated by employing  
 ⍴1, q1, q2, … … qn ARDL models. 
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The long-run dynamics of equation (3) are estimated by using the ARDL technique in equation (2), 

where long-run relationships in equation (1) are calculated using subsequent formulas, where j = 1, 2, ….., 
4 and m = 2, 3, … ….,6. 

 
The short-run dynamics of equation (3) are estimated using equation (2). 

 

∆𝑄𝑄𝑄𝑄𝑡𝑡 = 𝛾𝛾0 + �
𝑛𝑛

𝑖𝑖=1

𝜎𝜎1𝑖𝑖𝑄𝑄𝑄𝑄𝑡𝑡𝑖𝑖−1 + �
𝑛𝑛

𝑖𝑖=1

𝜎𝜎2𝑖𝑖𝐶𝐶𝐶𝐶41 + �
𝑛𝑛

𝑖𝑖=1

𝜎𝜎3𝑖𝑖∆𝐶𝐶𝐶𝐶22 𝑡𝑡𝑖𝑖−1 + �
𝑛𝑛

𝑖𝑖=1

𝜎𝜎4𝑖𝑖∆𝑁𝑁2𝐶𝐶3 𝑡𝑡𝑖𝑖−1

+ �
𝑛𝑛

𝑖𝑖=1

𝜎𝜎5𝑖𝑖∆𝑃𝑃𝐶𝐶𝑃𝑃4 𝑡𝑡𝑖𝑖−1 + �
𝑛𝑛

𝑖𝑖=1

𝜎𝜎6𝑖𝑖∆𝐺𝐺𝐺𝐺𝑃𝑃5 𝑡𝑡𝑖𝑖−1 + �
𝑛𝑛

𝑖𝑖=1

𝜎𝜎7𝑖𝑖∆𝑇𝑇𝑇𝑇𝑃𝑃6 𝑡𝑡𝑖𝑖−1

+ �
𝑛𝑛

𝑖𝑖=1

𝜎𝜎𝑛𝑛𝑖𝑖𝐸𝐸𝐶𝐶𝑇𝑇𝑡𝑡𝑖𝑖−1 + 𝑒𝑒𝑡𝑡  

(3) 
 

In order to detect any possible problems with the model, various diagnostic tests are employed. These 
tests include the Jarque-Bera (JB) test for normality, the Breusch-Pagan-Godfrey test for heteroskedasticity, 
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and the Breusch-Godfrey LM test for serial correlation. Additionally, a Granger causality test based on 
VAR is performed to investigate the causal direction among variables (Lee & Brahmasrene, 2013). 

DATA 

Annual data is collected from 1990 to 2020. The duration is based on data availability. The data on total 
agricultural output, environmental pollution consisting of carbon dioxide emissions (metric tons per capita) 
(CO2), Methane emissions in the energy sector (thousand metric tons of CO2 equivalent) (CH4), and Nitrous 
oxide emissions in the energy sector (thousand metric tons of CO2 equivalent) (N2O), population growth, 
the index of agricultural total factor productivity (TFP), and economic growth (GDP growth) are collected 
from World Development Indicators (WDI). Represents the detailed description and source of each variable 
used in this study as follows: 

Table 1. Variable description and sources  

Source: Authors’ compilation 

 
RESULTS  

Descriptive Statistic  
Table 2. Descriptive Statistic 

Variables Mean Max Min St.Dev. 
QA 7.145665 7.282140 63949807 0.113207 
CH4 4.037070 4.138066 3.818892 0.090310 
POP 2.091346 2.877740 1.079364 0.599865 
TFP 89.52522 104.9348 69.71543 11.98685 
GDPG 0.759463 1.00017 -0.285943 0.228397 
CO2 6.056943 7.719436 3.117819 1.408996 
N2O 3.886019 4.01587 3.666071 0.116721 

                  
Source: Authors’ compilation 

Acronym of 
variable 

Description of Variables Data Source Year 

QA Quantity of total agricultural output 
(proxy of food security) 

Food and Agricultural Organization (FAO) 
statistic 

1961 - 2020 

CH4 Methane emissions in the energy 
sector (thousand metric tons of CO2 
equivalent) (CH4) 

World Development Indicator (WDI) 2023 2019 - 2021 

CO2 Carbon dioxide emissions (metric 
tons per capita) (CO2)  

World Development Indicator (WDI) 2023 2019 - 2021 

N2O Nitrous oxide emissions in the 
energy sector (thousand metric tons 
of CO2 equivalent) (N2O) 

World Development Indicator (WDI) 2023 2019 - 2021 

POP Population growth (annual %) – 
Annual population growth  

World Development Indicator (WDI) 2023  2019 - 2021 
 

GDP GDP growth (annual %) – Annual 
percentage change in GDP  
 

World Development Indicator (WDI) 2023  2019 - 2021 
 

TFP Index of agricultural total factor 
productivity (TFP) 
 

Food and Agricultural Organization (FAO) 
statistics  

1961 - 2020 
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Unit Root Test 
Table 3. Unit root test of stationary 

Variables ADF Philip Perron Order of 
indifference 

Level 1st Different Level 1st Different 
QA -2.2981 -7.4077*** -1.6529 -7.1396*** I(1) 
CO2 -2.1594 -6.6295*** -3.261** -6.6295*** I(1)/ I(0) 
N2O -1.7797 -6.2204*** -1.8976 -6.2107*** I(1) 
CH4 -3.2841** -4.1939** -3.1848** -4.2114** I(0) 
POP 0.4236 -3.2276** 1.1376 -3.1073** I(1) 
TFP -1.3613 -8.4776*** -1.4637 -8.0410*** I(1) 
GDP -4.7300** -6.4200*** -4.7380** -25.1245*** I(0) 

Note: *** and ** denote 1% and 5% significant levels.  
Source: Authors’ compilation 

 

Before analysing the long- and short-term dynamics of the model, we conducted unit root tests to check 
the stationarity level of each series. Our study primarily used the widely-used "Phillips–Perron" (PP) and 
"Augmented Dickey–Fuller" (ADF) tests, though there have been various tests proposed for stationarity in 
previous studies. We examined the stationarity of all variables in the log form at both the "level" [I(0)] and 
the "first difference" [I(1)], as shown in Table 3. According to the results from both the PP and ADF tests, 
all variables were found to be stationary at I(1). 

Bound Test 
Table 4. Bound testing cointegration results 

Note: The unrestricted assumption is used in all models. Terms ‘L’ and ‘U’ denote lower and upper critical bound values. Likewise, 
*** and ** respectively represent the presence of a cointegration at 1% and 5% significance levels.  
 
Source: Authors’ compilation 

 
Before delving into the analysis of both long- and short-term relationships, we employed the bounds 

cointegration testing approach, coupled with a joint-F significance test, to determine if the variables in the 
study exhibit cointegration over the long run. The results, which are displayed in Table 4, include the 
computed F-values and their corresponding significance levels (10%, 5%, and 1%), as well as the lower 
critical values for I(0) and I(1). Notably, the fixed (tabulated) values of the upper bound I(1) were found to 
be smaller than the calculated F-values, and even at the 1% level, Narayan's (2005) test (with intercept and 
without trend) showed high significance. As a result of these procedures, it was effectively confirmed that 
there exists a long-term relationship among CH4, CO2, N2O, GDP, population, the index of agricultural 
total factor productivity (TFP), and agricultural output. 

In this section, we presented the empirical results of both long-run and short-run dynamics by 
employing the ARDL approach to examine the relationship between environmental pollution (CH4, CO2, 

ARDL Model  F-stats Lag 
order  

Critical bound values  Cointegration 
L-U (1%)  L-U (5%) L-U (10%)   

QA (CH4, POP, TFP, GDP) 8.9487**
* 

4,4,4,3, 4 4.28 – 5.84 3.06 – 4.22 2.53 – 3.56 Yes 

QA (CO2, GDP, POP, TFP) 7.6743**
* 

1,0,2,0,3 4.28 - 5.84 3.06 – 4.22 2.53 – 3.56 Yes 

QA (N2O, GDP, POP, TFP)  6.9005**
* 

1,2,2,0,3 4.28 - 5.84 3.06 – 4.22 2.53 – 3.56 Yes 

QA (N2O, POP, TFP) 5.5277** 1,2,4,3 4.16 – 5.97 3.27 – 4.31 2.68 – 3.59 Yes 



88 Irlisuhayu Mohd Ramli  et al / Social and Management Research Journal (2023) Vol. 20, No. 2 

https//doi.org/10.24191/smrj.v20i2.24317 ©Authors, 2023 

N2O), GDP, population, the index of agricultural total factor productivity (TFP), and agricultural output in 
the context of Malaysia. To facilitate our analysis, most of the variables used in the model have been 
converted into logarithmic form. Consequently, the probabilities of the resulting coefficients can be 
interpreted as elasticities in the long term. 

Estimation of the ARDL Model  
Table 5. Estimation of long-run and short-run ARDL with diagnostic and model stability 

Variables Model 1 Model 2 Model 3 Model 4 
Long run      
CH4 0.2770*** 

(0.0774) 
- - - 

CO2 - 0.0240 
(0.0157) 

- - 

N2O - - 0.3696** 
(0.1360) 

0.3104*** 
(0.1114) 

GDP 0.0521 
(0.0281) 

0.0889 
(0.0637) 

0.0735 
(0.0423) 

- 

POP -0.0714*** 
(0.0122) 

-0.0474* 
(0.0254) 

-0.0677*** 
(0.0186) 

-0.0644*** 
(0.0165) 

TFP 0.0047*** 
(0.0008) 

0.0048** 
(0.0018) 

0.0030** 
(0.0014) 

0.0033** 
(0.0012) 

Constant 5.7299*** 6.6216*** 5.5399*** 5.7923*** 
Short run      
 
CH4 

0.2023*** 
(0.0595) 

- - - 

CO2 - 0.0167** 
(0.0064) 

- - 

N2O - - 0.1495** 
(0.0607) 

0.1490** 
(0.0601) 

GDP 0.0132 
(0.0081) 

0.0115 
(0.0087) 

0.0058 
(0.0084) 

 

- 

POP -0.0520*** 
(0.0132) 

-0.0329*** 
(0.0116) 

-0.0395*** 
(0.0128) 

-0.0390*** 
(0.0127) 

TFP 0.0031*** 
(0.0004) 

0.0026*** 
(0.0005) 

0.0024*** 
(0.0005) 

0.0024*** 
(0.0005) 

ECTt-1 -0.7203*** 
(0.0655) 

-0.6493*** 
(0.0643) 

-0.6031*** 
(0.0606) 

-0.6009*** 
(0.0611) 

RAMSEY Test 0.0714 
(0.7915) 

1.7478 
(0.1981) 

1.3525 
(0.2558) 

0.5456 
(0.4668) 

CUSUM test Yes Yes Yes Yes 
CUSUMSQ  Yes Yes Yes Yes 
Diagnostic tests     
JB-Norm 0.1548 0.8098 0.1008 1.8650 
 (0.9255) (0.6670) (0.9508) (0.3936) 
LM – BG  0.5281 

(0.5964) 
0.2854 

(0.7542) 
0.0282 

(0.9722) 
0.0516 

(0.9498) 
Hetro – BPG   0.6400 

(0.6713) 
0.9736 

(0.4522) 
0.6419 

(0.6699) 
0.6422 

(0.6371) 
     
     

For coefficient, standard errors are in parenthesis. *, **, and *** represent the level of significance at 10, 5, and 1%, respectively. 
Probabilities for diagnostic tests are in parenthesis.  

Source: Authors’ compilation 
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Table 5 presents the long and short-term effects of CH4, CO2, and N2O on agricultural output, (proxy 
of food security) and other explanatory factors. The results from Model 1 show that a 1% increase in CH4 
leads to a 0.28% increase in agricultural output in the long run and a 0.20% increase in the short run. Based 
on the models tested, it appears that there is no significant impact on the short-run or long-run relationship 
between GDP growth and other factors.  

Similarly, in Models 2 and 3, a 1% increase in CO2 and N2O leads to a 0.02% and 0.37% increase in 
agricultural output in the long run, respectively. In the short run, a 1% increase in CO2 and N2O results in 
a 0.02% and 0.15% increase in agricultural output, respectively. According to Model 4, a 1% increase in 
N2O results in a 0.31% increase in agricultural output in the long run and a 0.15% increase in the short run. 

The research findings indicate that population growth has a negative and statistically significant impact 
on agricultural output in all models. Specifically, a 1% increase in population leads to a 0.07% decrease in 
agricultural output in the long run and a 0.05% decrease in the short run in Model 1. In addition, a 1% 
increase in population growth causes a reduction in agricultural output in Model 2, Model 3, and Model 4 
by 0.05%, 0.07%, and 0.06% respectively in the long run. Similarly, in the short run, a 1% upsurge in 
population growth results in a decrease in agricultural output of Model 2, Model 3, and Model 4 by 0.03%, 
0.04%, and 0.04% respectively. 

It has been found that there is a positive correlation between the index of agricultural total factor 
productivity (TFP) and agricultural output in Malaysia in all four of the models analysed. Specifically, a 
1% increase in TFP leads to a corresponding increase in agricultural output of 0.005% in Models 1 and 2, 
and 0.003% in Models 3 and 4 in the long run. On the other hand, in the short run, a 1% increase in TFP 
only results in a 0.003% increase in agricultural output in Models 1 and 2, and a 0.002% increase in Models 
3 and 4. 

Several diagnostic tests have been conducted to ensure accurate and dependable results. The Jarque-
Bera test was used to assess data normality, with a critical value lower than 5 and a probability value greater 
than 5% indicating statistical insignificance, meaning that all models contain normally distributed data. The 
serial correlation LM test revealed insignificant results, with F-stats greater than 1% of the critical value, 
indicating that none of the models have serial correlation problems. 

To examine heteroscedasticity, we conducted the Breusch-Pagan (BP) test, resulting in a statistically 
insignificant Chi-square test probability value. This indicates that the null hypothesis of homoscedasticity 
cannot be rejected, suggesting that the variance of residuals is constant across all observations. To ensure 
the robustness of the models' results, we also assessed their stability using the cumulative sum of recursive 
residual (CUSUM) and cumulative sum of recursive residual square (CUSUMSQ) tests (Brown et al., 
1975). An appendix contains the graphical results for CUSUM and CUSUMSQ, which indicate dynamic 
stability. 
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Model 1 
CUSUM CUSUMSQ 
   

 
 

 

 

Fig. 1. CUSUM and CUSUMSQ Model 1 

Source: Authors’ compilation 

 

 

Model 2 
CUSUM CUSUMSQ 
 

 

 

Fig. 2. CUSUM and CUSUMSQ Model 2 

Source: Authors’ compilation 
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Model 3 
CUSUM CUSUMSQ 
 

 
 

 

 

Fig. 3. CUSUM and CUSUMSQ Model 3 

Source: Authors’ compilation 

 

 

Model 4 
CUSUM CUSUMSQ 
 

 

 

 

Fig. 4. CUSUM and CUSUMSQ Model 4 

Source: Authors’ compilation  
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CONCLUSIONS AND POLICY RECOMMENDATIONS 

Reducing environmental pollution becomes a key concern for both rising and advanced economies. As 
China now ranks first in the world for greenhouse gas emissions, significant increases in greenhouse gas 
emissions and air pollution have become a serious concern (Irfan et al., 2023). A preliminary analysis 
indicates that there is a significant relationship between agricultural output and environmental pollution, 
especially, CH4, CO2, and N2O. This relationship shows that environmental pollution and food security are 
related based on the bounds cointegration testing approach that has been done using the ARDL method. 
The correlation is positive, indicating a link between increased environmental contamination and increased 
agricultural production.  

Environmental pollution, such as air pollution, water contamination, soil degradation, and chemical 
residues, can harm agricultural ecosystems, reduce crop yields, and compromise the quality and safety of 
food (Boregowda et al., 2022). It can also negatively affect the health of livestock and aquatic resources, 
leading to food scarcity, reduced food security, and potential risks to human health. However, several 
practices can be considered such as implementing eco-friendly agricultural techniques, conservation efforts, 
and sustainable practices, which can have positive effects on food production, foster environmental health 
and enhance long-term food security. 

Particularly, as environmental regulations become more stringent, agricultural producers are forced to 
consider their issues with low factor utilisation and high pollution emissions during production. As a result, 
they are compelled to adopt new production technologies to optimize factor allocation, lower pollution 
emissions, and raise the value added to their products. Increased competitiveness brought on by higher-
valued products can also help agricultural producers generate excess profits in the short term, offsetting the 
negative effects of higher environmental management costs. The optimisation of factor allocation efficiency 
can increase agricultural production efficiency (Chen et al., 2022). 

A study on the contribution of agricultural output and energy consumption to environmental pollution 
in Portugal explores the correlation between carbon dioxide emissions and agricultural activities, including 
crop production, livestock production, and agricultural land use. The findings also reveal that, over the long 
term, agricultural activities and energy consumption have a positive association with environmental 
pollution. Consequently, there is a need for Portuguese agriculture to adopt more sustainable practices, 
while also mitigating the adverse effects of intensive crop cultivation and animal husbandry (Leitão & 
Balogh, 2020). 

From the findings, it has been found that there is a positive correlation between the index of agricultural 
total factor productivity (TFP) and agricultural output in Malaysia in all four of the models analysed. 
Specifically, a 1% increase in TFP leads to a corresponding increase in agricultural output of 0.005% in 
Models 1 and 2, and 0.003% in Models 3 and 4 in the long run. On the other hand, in the short run, a 1% 
increase in TFP only results in a 0.003% increase in agricultural output in Models 1 and 2, and a 0.002% 
increase in Models 3 and 4. Hence, the TFP index allows the government to assess the performance of the 
agricultural sector over time. By comparing TFP trends across different periods, policymakers can identify 
whether productivity improvements are keeping pace with input growth. This assessment helps gauge the 
sector's overall efficiency and informs decision-making. Besides that, governments can use the TFP index 
to identify areas of inefficiency within the agricultural production process. Sectors with declining or 
stagnant TFP growth indicate the need for interventions to address underlying inefficiencies. Policymakers 
can pinpoint where resources are being underutilised and implement measures to optimize their allocation. 
Additionally, the TFP index can guide policies that promote sustainable practices, including soil 
conservation, water management, and agroecological approaches. By encouraging environmentally 
friendly practices, governments ensure long-term agricultural productivity. 

Other than that, governments should give priority to community participation and educational 
initiatives that spread awareness of the negative consequences of pollution on food security. Policymakers 
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may build a groundswell of support for sustainable food production by involving local populations in efforts 
to reduce pollution and by promoting environmentally friendly behaviours. In conclusion, authorities can 
pave the path for a more resilient and secure food future by implementing a multi-pronged strategy that 
encompasses sustainable agriculture, research, and community participation. 

Environmental pollution poses substantial challenges to food production in multiple ways. To ensure a 
sustainable and secure food supply, it is imperative to implement comprehensive measures to mitigate 
pollution, promote eco-friendly agricultural practices, conserve natural resources, and reduce greenhouse 
gas emissions. By addressing environmental pollution, we can safeguard agricultural ecosystems, enhance 
food production, and work towards achieving a resilient and sustainable food system for future generations. 
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