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Abstract—One of the most dynamic areas in AI research is object 
detection, a field that continues to evolve due to advancements in 
chip computing power and deep learning techniques. The central 
goal of object detection is to identify objects and determine their 
precise locations by leveraging image processing technology. This 
application finds utility across diverse industries, such as traffic 
management, crime scene investigation, and assisted driving. The 
training process for deep learning-based object identification 
involves several key steps, thoroughly exploring the data 
preprocessing, neural network design, prediction, label allocation, 
and loss calculation. Deep learning-based object detection 
algorithms can be categorized into three main types: end-to-end 
algorithms, two-stage algorithms, and one-stage algorithms. 
Additionally, algorithms can be further divided into anchor-free 
and anchor-based variants, based on whether bounding boxes are 
predetermined. This paper begins by reviewing the history and 
evolution of object detection. It also outlines significant milestones 
for backbone networks, traditional object detection models, and 
deep learning-based object detection models, all according to their 
chronological progression. Furthermore, examples of essential 
performance evaluation metrics and datasets are provided, while 
highlighting pressing issues and emerging trends within the field 
that demand further investigation. 
 

Index Terms— Object detection, deep learning, artificial 
intelligence, transformer, convolutional network.  
 

I. INTRODUCTION 
BJECT detection algorithms are used to classify and locate 
objects in images, calculating their positions with 

regression functions and judging categories with classification 
functions. Over the past three decades, there has been a 
tremendous advancement in object identification algorithms, 
with a steady transition from theoretical study to practical 
implementations. They have been widely used in computer-
aided design, assisted driving, medical diagnosis, and other 
fields. There have been roughly two stages in the development 
of object identification technology: conventional object 
detection and deep learning-based object detection [1]. 

Before 2014, most suggested approaches relied on the 
conventional object detection algorithm. Pre-processing, region 
selection, feature extraction, and feature classification are 
among the detection steps and procedures. Pre-processing 
lessens interference and noise, increasing the variety of images 
available for training. The standard pre-processing methods are 
grayscale processing, histogram equalization, median filtering, 
mean filtering, Gaussian filtering, spatial domain denoising, 
flipping, and cropping. Traditional object detection algorithms 
use the technique of sliding windows to scan the entire image 
and gather all potential positions of objects to find their 
locations. To find possible candidate locations, feature 
extraction uses techniques like Scale Invariant Feature 
Transform (SIFT), Speeded Up Robust Features (SURF), 
Histogram of Oriented Gradients (HOG), Haar-like features 
(Haar), and Local Binary Pattern (LBP). Feature classification 
methods include Adaptive Boosting (AdaBoost), Support 
Vector Machines (SVM), Deformable Part Model (DPM), and 
Decision Tree (DT). However, it is hard to choose appropriate 
windows when the number of pixels in a picture increases. Due 
to manually designed operators to extract features, the 
portability of traditional algorithms is weak.  

Deep learning-based object detection algorithms have 
increasingly risen to the forefront of computer vision research 
because of the development of large-scale image datasets and 
high-performance computing chips. The three categories of 
object identification methods based on deep learning include 
two-stage object detection models, one-stage object detection 
models, and end-to-end object detection models. Besides, 
object detection techniques can be categorized into two groups: 
anchor-based object identification models and anchor-free 
object detection models, depending on whether anchor boxes 
are constructed beforehand. As illustrated in Fig. 1, there are 
two processes: training and testing. 
 

 
 
Fig. 1. The procedure for training and testing. 
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Training involves sending a training dataset into a designed 
neural network, using a loss function to generate gradients, and 
updating network parameters through backpropagation. By 
iterative learning, a neural network that can classify or regress 
for new unknown data. In the training phase, a validation 
dataset is included for hyperparameter selection. The training 
process consists of three specific steps: data pre-processing, 
network construction and prediction, and label allocation and 
loss calculation, while testing usually includes only the first two 
steps. Several frameworks have been created by major 
corporations like TensorFlow, PyTorch, and PaddlePaddle to 
assist programmers in swiftly creating object detection 
algorithms. In summary, deep learning-based object detection 
is fast evolving in terms of algorithmic research and 
commercial application. 

II. DATA PRE-PROCESSING 
Data augmentation and data normalization are typically 

included in data pre-processing. Data augmentation comes in 
two flavors: supervised data augmentation and unsupervised 
data augmentation. Supervised data augmentation, which 
includes the single-sample data augmentation and multi-sample 
data augmentation approaches, is the extension of images using 
data transformation rules. Information dumping, color 
modification, and geometric operation are components of 
single-sample data augmentation. Multiple-sample 
augmentation methods employ various samples to generate new 
instances. Geometric transformation contains flipping, rotation, 
shifting, clipping, deformation, scaling, and other operations. 
The color transformation includes brightness adjustment, 
noising, blurring, erasing, filling, etc. Information dropping 
involves the deliberate removal of a part of a picture, which 
should avoid excessive deletion and retention of continuous 
areas. The techniques listed in Table I represent some of the 
noteworthy approaches. 
 

TABLE I 
UNITS FOR MAGNETIC PROPERTIES 

Data Augmentation Method Description 

Mixup [2] Directly mix different pictures. 

Cutout [3] Delete a continuous area in an image. 

CutMix [4] Crop a part of one picture and overlay it on 
another picture. 

Manifold Mixup [5] Mix the input image with the output of 
middle-hidden layers. 

PatchUp [6] Mix contiguous blocks of features in the 
hidden space. 

SaliencyMix [7] Add significance analysis. 

PuzzleMix [8] Only clip significant regions and execute 
some optimization operations. 

FMix [9] Convert the clipping area from a rectangle to 
an irregular shape. 

Co-Mixup [10] Extract significant regions from multiple 
samples and mix them. 

Mosaic [11] Splice four pictures by randomly scaling, 
clipping, and arranging. 

Random erasing [12] Fill an area in the picture with the same pixel 
value. 

Hide-and-Seek  [13] Divide an image into several small patches 
and delete them randomly. 

Grid mask [14] Remove a region with separate pixel sets. 

Unsupervised data augmentation methods include two 
methods. One is to learn the distribution of a dataset and 
randomly generate new pictures consistent with the training 
datasets. The representative algorithm is Generative 
Adversarial Network (GAN) [15], which produces fake images 
by training adversarial networks. The other is to learn a data 
augmentation method suitable for the current task, such as 
AutoAugment [16]. This algorithm searches for the optimal 
strategy through reinforcement learning. 

In the process of model training, the parameters in the 
network are constantly updated and transformed, resulting in 
the distribution transformation, which is called Internal 
Covariate Shift (ICS). Therefore, its mean and variance need to 
be transformed to a certain range by data normalization 
methods to alleviate the vanishing gradient. There are four 
widely used normalization methods, as shown in Table II. 

 
TABLE II 

FOUR NORMALIZATION METHODS IN OBJECT DETECTION 

Data Norm Dimension of Normalization 

Batch Norm [17] Batch, width, and height. 

Layer Norm [18] Across all channels, widths, and heights. 
Instance Norm 

[19] Across width and height. 

Group Norm [20] Within some groups of channels, width, and 
height. 

 

III. NETWORK CONSTRUCTION AND PREDICTION 
The architecture of the object detection network includes the 

backbone network, feature fusion network, and prediction 
network, as shown in Fig.2. When inputting the picture into the 
network, the person in the picture can be detected and enclosed 
through the bounding box. The core work of object detection is 
to design an efficient feature extraction network. 

 

 
Fig. 2. The network architecture of object detection model. 
 

A. Backbone Network 
The backbone is located at the first level of the object 

detection model, which is usually composed of a convolution 
network, Full Connected Network (FCN), or transformer 
modules. Backbones are mainly used to extract features whose 
complexity determines the time consumption. A representative 
network is AlexNet [21], which was proposed by Alex 
Krizhevsky et al. in 2012 and won the championship of the 
ImageNet competition. VGG Model was proposed in 2014, 
which further deepens the network depth [22]. Kaiming He et 
al. proposed ResNet in 2016, which is a significant milestone 
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and solves the problem of declining accuracy as networks 
continue to deepen [23]. DenseNet is a more intensive 
connection method by connecting all layers [24]. DarkNet was 
proposed in the YOLOv2 framework, which draws on the 
residual structure in ResNet and uses Batch Normalization 
(BN) and LeakyReLU [25]. Cross Stage Partial Network 
(CSPNet) adds more gradient information paths while reducing 
the amount of computation [26]. The latest research on 
networks focuses on model re-parameterization techniques, 
which contain multiple convolution modules in the training 
stage and merge into one in the inference stage, thus improving 
the prediction speed. Re-param VGG (RepVGG) adopts high 
precision multi-branch network learning weights during 
training and uses low delay single branch network during 
reasoning [27]. 

In addition to the conventional backbone networks, recent 
research hotspots are to build networks based on attention 
mechanisms. In 2017, the Google team proposed attention 
mechanisms [28]. In 2020, the DEtection with TRansformers 
(DETR) built on an attention mechanism was proposed, which 
is a novel object detection network based on the transformer 
architecture [29]. Shortly after the proposal of DETR, 
Deformable DETR was improved to reduce the computation 
and promote the detection accuracy [30].  

To improve their ability to extract features, backbone 
networks are typically pre-trained on popular datasets like the 
ImageNet dataset. Transfer learning can utilize parameters that 
have already been trained using these datasets, which helps to 
speed up the convergence of model training [31]. Fine-tuning is 
a popular method for training backbone networks. The model 
can accelerate convergence by altering the structural elements, 
such as adjusting the number of output categories or selectively 
loading the weight parameters. 
 

B. Feature Fusion Network 
Feature Fusion Networks (FFN) are based on a multi-scale 

fusion of features extracted from backbones to improve the 
object detection capability, especially for detecting small 
targets submerged in the background. The lower layer features 
have higher resolution and contain more position information. 
High-level features have stronger semantic information and a 
greater receptive field, but their resolution is relatively low, 
lacking detailed information. 

According to the order of fusion and prediction, feature fusion 
is divided into early fusion and late fusion. In early fusion, the 
network initially fuses multi-layer features by concatenation or 
addition also known as skip connection, and then makes 
predictions using the fused features. In late fusion, several 
detection results are finally combined based on partially fused 
layer detection. A Feature Pyramid Network (FPN) is a 
classical FFN, which up-samples deep-layer information and 
adds the low-layer information element by element [32]. Multi-
scale CNN makes predictions based on multi-scale features and 
then synthesizes the prediction results [33]. Some other feature 
fusion networks, such as Path Aggregation Networks (PANet), 
Multi-level Feature Pyramid Networks (MLFPN), Adaptive 
Spatial Feature Fusion (ASFF), and Bi-directional Feature 
Pyramid Networks (BiFPN) are shown in Table III. 
 

TABLE III 
SOME FEATURE FUSION METHODS 

Methods Method Description 

FPN [34] Bottom-up and then top-down lateral fusion of 
features at different scales. 

PANet [35] Add the bottom-up path augmentation and adaptive 
feature pooling. 

MLFPN [36] 
Add Thinned U-shape Modules (TUM), Feature 
Fusion Module (FFM), and Scale-wise Feature 

Aggregation Module (SFAM) modules. 
ASFF [37] Add learnable feature fusion coefficients. 

BiFPN [38] Integrate top-down and bottom-up to form a module 
that can be repeatedly stacked and used. 

 

C. Prediction Network 
The prediction network also referred to as the detection head, 

transforms the input feature map dimension produced by the 
fusion network into the dimension corresponding to the number 
of object categories and coordinates. Targets in the original 
image are surrounded by bounding boxes that are drawn based 
on the predicted coordinates, and categories are annotated. 
Typically, the regression head and the classification head are 
two of the parts of the head in YOLOX. [39]. The author of 
YOLOv7 proposed a strategy for training auxiliary heads that 
attempts to boost training accuracy without affecting inference 
time. [40]. The auxiliary heads only appear in the training 
process and are not used in the prediction process. Based on the 
Transformer detector, object detection is modeled as an end-to-
end bounding box prediction problem, greatly simplifying the 
complexity of the prediction head. 
 

IV. LABEL ASSIGNMENT AND LOSS CALCULATION 
Label assignment primarily concerns how each pixel on the 

feature map is represented with appropriate learning objectives 
and how positive and negative samples are assigned. Through 
backpropagation, the loss, which expresses the discrepancy 
between the expected outcome and Ground Truth (GT), gives 
optimizers the gradients. 
 

A. Label Assignment 
In object detection, the criteria for label assignment include 

Intersection over Union (IoU), distance criterion, likelihood 
estimation, bipartite matching, and Optimal Transport 
Assignment (OTA). Label assignment methods can also be 
divided into four types as shown in the following Table IV. 
 

TABLE IV 
LABEL ASSINGMENT METHODS IN OBJECT DETECTION 

Type Assignment Criteria Learning Objective 

Anchor box [41] IoU Bounding boxes 

Anchor free [42] Gaussian heatmap Keypoints and radius 

key point [43] IoU Representative points 
Set prediction 

[29] Hungarian algorithm Bounding boxes 
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IoU is the most used label assignment criterion for 
determining how much of the entire area of two regions overlap 
with one another. However, IoU cannot indicate the separation 
between the anticipated bounding box and the ground truth 
when they do not intersect. Additionally, it is unable to 
determine the angle, direction, or aspect ratio. Because the loss 
function in this situation is not differentiable, neural networks 
are not optimized. As stated in Table V, some further, improved 
IoU methods are suggested. 
 

TABLE V 
IOU-BASED ALGORITHMS 

IoU Method Description 

GIoU [44] Introduce a penalty when there is no overlap. 

DIoU [45] Add optimization of the distance. 

CIoU [45] Add a parameter of aspect ratio. 

EIoU [46] Calculate length and width separately. 

SIoU [47] Add the angle parameter between the two boxes. 

 
In object detection, there is no exact match between the input 

image and the label. A picture may contain one or multiple 
objects. IoU allocates labels according to the local spatial 
position relationship between predicted anchors and ground 
truths, which causes many duplicate boxes. There are four rules 
for judging positive and negative samples using IoU: threshold, 
Top K boxes, dynamic IoU, and statistical distribution. Some 
IoU-based label assignment methods are shown in Table VI. 
 

TABLE VI 
SOME LABEL ASSIGNMENT METHODS 

Method Description 

Guided Anchoring [48] Create anchors according to conditional 
distributions (position and scale) 

MetaAnchor [49] Randomly select anchors of any shape 

ATSS [50] Automatic positive and negative sample 
selection based on statistical aspects of GT 

AutoAssign [51] Fully data-driven assignment 

OTA [52] Find the global optimal partition of the 
Optimal Transport problem 

SimOTA [39] Faster and simplified OTA 

 
In addition, object detection methods use the distance 

criterion and assign the corresponding labels based on the 
distance from the point to the center of the object. Binary 
matching and likelihood estimation criteria are based on the 
joint classification and regression loss for the best label 
assignment. Bipartite graph matching, an end-to-end label 
assignment technique, is used from a broad perspective to 
create a set prediction between output and labels [29].  
 

B. Loss Calculation 
The loss function can be separated into two categories based 

on the outcomes of the object detection: regression loss and 
classification loss. The classification loss assesses the 
misclassification, whereas the regression loss computes the 
coordinate errors of the predicted bounding boxes. The 
weighted sum of the two components represents the total 

inaccuracy. The object detection network's weights are updated 
using the backpropagation algorithm by the overall loss. Mean 
Absolute Error (MAE, L1), Mean Squared Error (MSE, L2), 
Root Mean Square Error (RMSE), and smooth L1 loss are 
typical regression loss functions. While L2 calculates the square 
sum of the distance, L1 calculates the average error of the 
distance. Smooth L1 loss uses the square function of L2 loss 
near point zero, which solves the problem that the gradient of 
L1 loss at point zero is not differentiable, making it smoother 
and easier to converge [53]. 

Binary cross-entropy loss, multi-class cross-entropy loss, and 
focal loss are examples of classification loss functions. A 
measure of the separation between two probability distributions 
is called binary cross-entropy, which may be applied to multi-
class cross-entropy loss. To address the issue of the excessively 
imbalanced amount of positive and negative samples in dense 
object detection tasks, the focal loss function is developed. The 
learning effect of hard negative samples can be enhanced by 
this function by including weight parameters based on standard 
cross-entropy loss. [54]. 
 

V. DATASETS AND EVALUATION INDICES 
Datasets are essential to the quick development of object 

detection systems. In general, datasets are split into the training 
set and the test set. The training set is further subdivided into a 
training subset and a validation subset. Annotation files from 
the training set are often in XML, JSON, or YAML formats. 
Each annotation file contains the category, coordinate, width, 
and height information of each picture. By testing algorithms 
on some public datasets, it is convenient to compare the pros 
and cons of different algorithms through some performance 
indices.  
 

A. Datasets 
Except for some private datasets related to specific tasks, the 

field of object detection has seen the emergence of numerous 
well-known datasets over the past ten years, including Open 
Images, MS COCO, ILSVRC, PASCAL VOC 2007, and 
PASCAL VOC 2012. These datasets are used by academics, 
researchers, and engineers to evaluate algorithm performance 
or for competitions, as shown in Table VII. 
 

TABLE VII 
SOME PUBLIC DATASETS IN OBJECT DETECTION 

Dataset Categories Images Samples 

Pascal VOC 2007 [55] 20 5K 12K 

Pascal VOC2012 [56] 20 11K 27K 

ILSVRC [57] 200 517K 534K 

MS COCO [58] 80 165K 897K 

Open Images [59] 6000 1910K 15440K 

 

The Pascal VOC image challenge competition is where Pascal 
VOC 2007 and Pascal VOC 2012 came from. The standard for 
assessing the effectiveness of image classification and object 
recognition algorithms, the ILSVRC dataset is used in the 
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ImageNet visual challenge from 2010 to 2017. It contains 
photos of numerous categories of everyday things. The MS 
COCO dataset contains real-world images that are intended for 
scene understanding. The largest object detection dataset in the 
world is called Open Images and is managed by Google. 
Datasets for several specific application sectors, such as 
pedestrian identification, face recognition, traffic signal 
detection, and medical imaging detection, are available in 
addition to datasets for general object detection. 
 

B. Evaluation Indices 
Deep learning-based object detection algorithms come in a 

variety of forms, making it particularly important to understand 
how to evaluate an algorithm's quality. The effectiveness of 
object detection should consider both the accuracy of the 
forecast and the position of the identified object. Precision (P), 
Recall (R), Average Precision (AP), mean Average Precision 
(mAP), and Frames Per Second (FPS) are the key performance 
evaluation metrics used in the object detection industry.  

In the calculations, True Positive (TP) denotes positive 
samples found by the model, whereas False Positive (FP) 
denotes negative samples predicted as positive by the model. 
Similarly, False Negative (FN) labels the positive samples that 
the model predicts as negative. The P-R curve depicts the 
overall effectiveness of the detection algorithm. The area under 
the P-R curve for a specific detected object is referred to as AP. 
The term "mAP" refers to the average of all categories, while 
AP only calculates one category. The term "FPS" describes how 
many photos the model can process per second.  

Companies and communities all over the world have made 
several object detection frameworks available. Among them, 
the most representative is the Detectron2 launched by 
Facebook. Detectron2 not only supports milestone object 
detections, instance segmentation, and pose estimation, but also 
provides semantic and panoramic segmentation tools. 
MMDetection is an open-source deep-learning object detection 
framework jointly developed by SenseTime Technology and 
the Chinese University of Hong Kong, which is characterized 
by modular packaging. 

 

VI. TWO-STAGE OBJECT DETECTION MODELS 
Two-stage object detection models are the earliest object 

detection algorithms based on deep learning, which have had a 
profound impact on subsequent algorithm research. The first 
step focuses on finding positions where objects appear in 
proposal anchor boxes, and the second step is to classify 
proposal boxes to find more accurate positions. These 
algorithms usually have high accuracy but slow speed. The 
milestones of the two-stage algorithms are shown in Fig. 3. 

 

 
 
Fig. 3. The milestones of two-stage object detection models. 

A. R-CNN 
As the first object detection algorithm based on deep learning, 

Region CNN (R-CNN) was proposed in 2014 [60]. On the 
VOC2012 dataset, the mAP of this model is 30% higher than 
the best model before. To train the classifier to identify objects, 
R-CNN first extracts around 2000 bounding boxes and then 
feeds each bounding box into a single convolutional neural 
network for feature extraction. The fundamental principle 
behind the selective search used by the bounding box selection 
method is to continually combine related pixels into an entity. 
This method first separates the image into several little parts, 
after which it determines how similar any two adjacent regions 
are. Each step produces areas preserved as bounding boxes as 
shown in Fig. 4.  
 

 
 
Fig. 4. The network architecture of R-CNN. 
 

B. SPPNet 
The Spatial Pyramid Pooling Network (SPPNet) was 

proposed by Kaiming He et al., which solves the shortcoming 
of slow speed in R-CNN [61]. The feature map of each 
candidate region can only be obtained by first entering the 
original image into the network, which is its most significant 
enhancement. While guaranteeing that the output is a fixed 
vector, SPPNet adds Spatial Pyramid Pooling to the CNN 
structure to allow the network input image to be of any size.  In 
Fig. 5, the network architecture is displayed. 
 

 
 
Fig. 5. The network architecture of SPPNet. 
 

C. Fast R-CNN 
The authors of R-CNN proposed Fast R-CNN given the 

shortcomings of their original model [53]. SVM requires 
additional storage space, resulting in slow training and testing. 
Another drawback is the R-CNN repeatedly calculates a lot of 
overleaps. The original model uses a Region of Interest (RoI) 
pooling layer to output different features to a fixed size. Each 
batch of 128 RoIs from various pictures is used, which results 
in an extremely slow training speed. Fast R-CNN minimizes 
computation by choosing all RoIs from just two images. The 
Fast R-CNN is shown in Fig. 6. 
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Fig. 6. The network architecture of Fast R-CNN. 
 

D. Faster R-CNN 
Ross B. Girshick et al. proposed Faster R-CNN in 2016, 

further improving the speed and accuracy compared with Fast 
R-CNN [41]. The Faster R-CNN network is divided into two 
parts: the shared full convolution network before ROI pooling 
and the ROI-wise subnet after ROI pooling. In Fast R-CNN, 
anchor boxes are still generated by the traditional selective 
search algorithm. Faster R-CNN combines feature extraction, 
anchor box generation, and coordinate regression in a unified 
neural network. Besides, a Region Proposal Network (RPN) is 
proposed to generate anchor boxes. Three aspect ratios and 
three scale factors are used to produce nine anchors of different 
sizes.  Although there are more than ten thousand anchors, the 
inference speed is faster because they are fixed. The 
architecture is shown in Fig. 7. 
 

 
 
Fig. 7. The network architecture of Faster R-CNN. 
 

E. R-FCN 
The main contribution of the Region-based Fully 

Convolutional Network (R-FCN) is to solve the contradiction 
between "translation variance in image classification" and 
"translation variance in object detection" [62]. The model 
improves the detection speed and accuracy by using position-
sensitive score maps. Compared with Faster R-CNN, R-FCN 
has a deeper shared convolutional network layer, which can 
obtain more abstract features. There are three branches in R-
FCN. The first branch is to perform RPN operations on the 
feature map to obtain corresponding RoIs. The second branch 
is to obtain a position-sensitive score map on the feature map 
for classification. The last branch is to obtain a position-
sensitive score map on the feature map for regression as shown 
in Fig. 8. 
 

 
 
Fig. 8. The network architecture of R-FCN. 
 

F. Other Two-stage Detectors 
Mask R-CNN is a combination of Faster R-CNN and FCN, 

where the former is responsible for object detection and the 
latter is responsible for object contour [63]. Setting the optimal 
IoU threshold is often a difficult task, and Zhaowei Cai et al. 
constructed a Cascade R-CNN by gradually increasing the 
threshold [64]. To address the imbalance between samples, 
features, and targets, a new two-stage object detection model, 
Libra R-CNN, was proposed in 2019 [65]. Another model, 
Hybrid Task Cascade (HTC) by combining the advantages of 
Mask R-CNN and Cascaded R-CNN,  achieves excellent 
performance [66].  Due to the complex process involved and 
relatively slow detection speed, the research gradually shifted 
to one-stage object detection. 
 

VII. ONE-STAGE OBJECT DETECTION MODELS 
One-stage object detection algorithms do not need to build 

region proposals and directly generate classification 
probabilities and bounding box coordinates, which have a faster 
detection speed. The milestones of one-stage detection models 
are show in Fig. 9. 
 

 
 
Fig. 9. The milestones of one-stage object detection models. 
 

A. YOLOv1 
You Look Only Once (YOLO) is the first one-stage model, 

which was proposed in 2015 [67]. Before it appeared, object 
detection algorithms were all two-stage methods. The 
disadvantage of two-stage methods is that they cannot meet 
real-time detection. YOLOv1 not only makes classification 
predictions in the last layer of the neural network but also adds 
position predictions. It divides an image into grids, and each 
grid corresponds to the center of N anchor boxes. In the test 
phase, only the bounding box with the highest probability in the 
same object category is selected as the prediction result. The 
prediction speed of YOLOv1 can reach more than 45 FPS, and 
its shortcoming is that it has low prediction precision on small 
objects gathered. This is mainly because the grids are sparse and 
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only two bounding boxes are predicted for each grid. The model 
is shown in Fig. 10. 
 

 
 
Fig. 10. The network architecture of YOLOv1. 
 

B. YOLOv2 
YOLOv2 is an improved version of YOLOv1 by the same 

author [25]. Firstly, YOLOv2 adds a batch normalization layer 
behind each convolutional layer, and the dropout layer is no 
longer used. Secondly, higher image resolution is used for 
training and an input image size will be randomly selected to 
enhance the ability to adapt to images of different sizes. Thirdly, 
YOLOv2 uses more anchor boxes to increase the number of 
candidate boxes, greatly improving the recall rate. Fourthly, the 
size of anchor boxes is obtained through clustering analysis 
based on the K-means algorithm by employing IoU as the 
distance measurement between two boxes. Lastly, to solve the 
problem of inaccurate prediction of the bounding box in 
YOLOv1, YOLOv2 constrains the center of the prediction 
frame within each fixed grid. The model is shown in Fig. 11. 
 

 
 
Fig. 11. The network architecture of YOLOv2. 
 

C. YOLOv3 
YOLOv3 makes use of three feature maps with different sizes 

to predict small, medium, and large objects [68]. Small feature 
maps predict large targets, while large feature maps predict 
small targets, thus improving accuracy. This model utilizes 
logistic regression for category prediction because one object 
can correspond to multiple categories. In addition, YOLOv3 
changes the Darknet-19 of YOLOv2 into Darknet-53 and uses 
the K-means method to obtain nine sizes of anchor boxes. The 
network is shown in Fig. 12. 

 

 
 
Fig. 12. The network architecture of YOLOv3. 
 
 
 

D. YOLOv4 
YOLOv4 improves images during training, using Mosaic 

enhancement, Cross mini-batch Normalization (CmBN), and 
Self-Adversarial Training (SAT) [11]. This version has a 
stronger backbone network, CSPDarknet53. In addition, the 
Mish activation function, label smoothing, and DropBlock were 
introduced. Besides, YOLOv4 inserted SPP, FPN, and Pyramid 
Attention Network (PAN) structures into the neck network. 
Compared with YOLOv3, the regression loss function adopts 
CIoU Loss, and the Non-Maximum Suppression (NMS) 
method filtered by the prediction becomes DIoU. The model is 
shown in Fig. 13. 

 

 
 
Fig. 13. The network architecture of YOLOv4. 

 

E. YOLOv5 
The same Mosaic data enhancement technique used in 

YOLOv4 is used in YOLOv5. In earlier iterations, anchor boxes 
had basic length and width values. The initial anchor box value 
is determined using a different model. The optimal anchor box 
settings are adaptively determined for each training. To reduce 
the number of incorrect computations, YOLOv5 adaptively 
adds the least amount of black edge filling to the original image. 
Fig. 14 displays the model. 

 

 
 
Fig. 14. The network architecture of YOLOv5. 

 

F. YOLOX 
YOLOv3 is used as the baseline model by YOLOX, and 

optimization are made on this basis [39]. YOLOX adds the 
Exponential Moving Average (EMA) weight update, cosine 
learning rate mechanism, and other training techniques. It 
adopts the IoU loss function to train the regression branch, and 
the Binary Cross Entropy (BCE) loss function to train the 
classification branch. Besides random horizontal flipping, color 
Jittering multi-scale data augmentation, and random resized 
cropping, Mosaic and Mixup data augmentation methods were 
introduced. YOLOX proposes an end-to-end decoupled head. 
In label assignment, it uses Simplified OTA (SimOTA) for 
sample matching as shown in Fig. 15. 
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Fig. 15. The network architecture of YOLOX. 

 

G. YOLOv6 
YOLOv6 has greatly improved the accuracy and detection 

speed compared with previous models [69]. It not only focuses 
on the AP and FPS performance but also is very friendly to the 
industry. For deployment, it provides hardware support for 
TensorRT, NCNN, OPENVINO, and other platforms. To better 
be adapted to GPU devices, the Re-parameter (Rep) skill is 
adopted, and the RepVGG structure is introduced on the 
backbone to construct EfficientRep. Its Neck also builds Rep-
PAN based on Rep and PAN. Like YOLOX, the head is 
decoupled and has a more efficient structure. YOLOv6 follows 
the anchor-free approach, abandoning the previous anchor-
based approach. Its data augmentation is consistent with 
YOLOv5, and simOTA is used as a label assignment method as 
shown in Fig.16. 

 

 
 
Fig. 16. The network architecture of YOLOv6. 

 

H. YOLOv7 
YOLOv7 adopts model re-parameterization techniques to 

combine multiple calculation modules into one in the reasoning 
phase [40]. The model is improved based on the Efficient Long-
Range Attention Network (ELAN) and Extended ELAN (E-
ELAN). In the YOLOv7, a cosine learning rate scheduling 
strategy is used to adjust the learning rate. The previous YOLO 
model uses the IoU and GT as soft labels, but YOLOv7 
introduces an auxiliary head to assist training. In addition, 
YOLOv7 also adopts the SimOTA method for sample 
matching. The model is shown in Fig. 17. 

 

 
 
Fig. 17. The network architecture of YOLOv7. 

 

I. SSD 
The Single Shot Multibox Detector  (SSD) can be viewed as 

the fusion of YOLO and Faster R-CNN [70]. The detection 
speed is quite quick since it uses a regression-based model to 
directly regress the category and position of objects in a 
network. Additionally, the idea of ROI is also applied. In Fig. 
18, the network is displayed. 

 

 
 
Fig. 18. The network architecture of SSD. 

 

J. Other One-Stage Detectors 
Many studies have improved One-stage object detection 

algorithms. Fully Convolutional One-Stage (FCOS) avoids 
complex calculations related to anchor boxes during the 
training process by removing the predefined anchor boxes and 
predicting them per pixel [71]. Chengjian Feng et al. proposed 
a Task-aligned One-stage Object Detection (TOOD) method by 
optimizing object classification and localization [72]. 

In addition, there is a large amount of research on lightweight 
object detectors. Jonathan Pedoeem et al. designed a 
lightweight model YOLO-LITE based on YOLOv2, which can 
run on both mobile and non-GPU devices [73]. YOLO Nano 
achieved excellent performance on NVIDIA Jetson Xavier 
while only occupying approximately 4MB of space [74]. 
Spiking-YOLO is the first model to use pulse neural networks 
for object detection, which consumes less energy than 
lightweight models based on YOLO [75]. SlimYOLOv3 
significantly reduces the computational complexity of the 
model through convolutional layer channel pruning [76]. 
 

VIII. THE END-TO-END OBJECT DETECTION MODELS 
These models receive original images, and directly output 

object classification and position. The milestones of end-to-end 
detection models are shown in Fig. 19. 

 

 
 
Fig. 19. The milestones of the end-to-end object detection models. 

 
Transformer was proposed by the Google team in 2017 [28]. 

This model uses the self-attention mechanisms and abandons 
the RNN structure so that the model can be parallelized and 
have global information. This is a completely attention-based 
sequence-to-sequence learning model, which utilizes attention 
encoders, decoders, and information transfer between them. 
The encoder of a transformer usually consists of one input layer, 
several encoding layers, and one output layer, while the decoder 
is made up of one input layer, several decoding layers, and one 
output layer. In the input layer, the input sequence is composed 
of word embedding and position embedding of words, and their 
sum is taken as the input vector. The network architecture is 
shown in Fig. 20.  
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Fig. 20. The network architecture of transformer. 
 

A. DETR 
The DETR is the first object detection model based on 

transformer architecture as shown in Fig. 21 [29]. It removes 
many hand-designed components, making generating anchors 
and IoU unnecessary. The Hungarian bipartite graph matching 
is used to predict objects uniquely, and the object detection 
problem is transformed into a set global search problem. 
Because DETR implements an end-to-end object detection 
mechanism, its object detection results have achieved high 
performance. Although DETR performs well, there are several 
issues. First, it needs more training time to converge compared 
with previous models. Second, performance at detecting small 
objects is generally not good enough. Wenyu Lv et al. proposed 
a Real-Time RT-DETR that surpasses YOLO detectors in both 
accuracy and speed [77]. 

 

 
 
Fig. 21. The network architecture of DETR. 
 

B. Deformable DETR 
For DETR, the initialized attention weight assigned to all 

feature pixels is almost equal. This causes the model to take an 
extended time to learn and focus on sparse object positions. In 
the encoder, the computational complexity increases in square 
order with the number of feature pixels, so it is difficult to 
process high-resolution features, resulting in poor small object 
detection. Deformable DETR combines deformable 
convolution with a transformer to propose a deformable 
attention mechanism, which solves the problems of slow 
convergence and high complexity in DETR [78]. Each pixel in 
this network does not need to be calculated interactively with 

all feature pixels, but only to be calculated with some pixels 
obtained from partial sampling. 

 

C. ViT 
Vision Transformer (ViT) was proposed by Google in 2020 

to apply Transformer to the field of computer vision [79]. ViT 
directly divides the image into patches with a fixed size and 
then obtains patch embedding through a linear transformation. 
When there is enough data for pre-training, ViT outperforms 
CNN. However, if the training data is not enough, the 
performance of ViT is generally worse than that of ResNets of 
the same size. Since attention maps of ViT become similar at a 
deeper level, Daquan Zhou et al. proposed a Re-attention 
method to regenerate attention maps [80]. Tokens-to-Token 
ViT has a 200% reduction in the number of parameters and an 
improvement in performance on ImageNet [81]. Chun-Fu Chen 
et al. proposed a dual branch structure, Cross-Attention Multi-
Scale Vision Transformer (CrossViT), to combine image 
patches of different sizes to produce image features [82]. 

 

D. Swin Transformer 
Swin Transformer was proposed in 2021, which has achieved 

state-of-the-art performance in many public datasets [83]. 
Compared with ViT, the Swin Transformer is more efficient 
and has higher accuracy. The model introduces two key 
concepts to solve the problems faced by the original ViT 
hierarchical feature maps and shifted windows. Based on 
different feature dimensions and the number of layers in each 
stage, the author designed four different models: Swin-T, Swin-
S, Swin-B, and Swin-L. 

 

E. DINO 
In response to the unclear meaning of a query and slow model 

convergence issues in DETR, DAB-DETR reintroduces anchor 
boxes into DETR to provide query interpretability and 
accelerate convergence [84]. Based on DAB-DETR, the authors 
proposed the DN-DETR by using de-noising training to solve 
the problem of unstable Bipartite graph matching of the DETR 
decoder, which can accelerate the rate of convergence of the 
model and significantly improve the detection precision [85]. 
Furthermore, the authors proposed DETR with Improved 
deNoising anchoOr boxes (DINO) with the state-of-the-art 
performance by introducing contrastive de-noising, mixed 
query selection, and look-forward twice technologies based on 
the previous two models [86]. Grounding DINO open-set object 
detector combined DINO with grounded pre-training, which 
can detect any object with human input such as class names or 
reference expressions [87]. 

 

F. Co-DETR 
The authors of Co-DETR point out the one-to-one matching 

problem of Deformable DETR, which leads to fewer positive 
queries and inefficient training [88]. The author proposes a 
simple and effective auxiliary training model Co-DETR, which 
uses a universal one-to-many matching to improve the training 
efficiency of encoders and decoders. Co-DETR only adds 
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auxiliary detection heads during the training phase, so 
introducing additional computational overhead during the 
training phase will not affect the efficiency of model inference. 
 

IX. THE DEVELOPMENT TRENDS 
Object detection has made remarkable achievements in the 

past twenty years, the performance of models has been 
continuously improved, and the application fields have been 
greatly extended. However, there are still some problems that 
are difficult to solve in this field. This section will discuss the 
problems faced and future research trends. 

 

A. Lightweight Object Detection 
Driven by artificial intelligence and the Internet of Things 

(IoT), it is urgent to push artificial intelligence to the edge of 
networks to fully release the potential of big data. Therefore, to 
ensure a certain accuracy, lightweight models reduce the 
amount of calculation to speed up the detection. Some large 
technology companies have introduced edge computing devices 
with built-in GPU or TPU modules, such as Nvidia Jetson 
Nano, Google Coral Development Board, and Intel 
Neurocomputing Stick. MobileNet is based on a streamlined 
architecture, which uses separable convolutions to build 
lightweight deep neural networks [89]. ShuffleNet is also a 
lightweight model, which solves the problem that different 
convolution output characteristic graphs cannot communicate 
in MobileNet by adding Pointwise Group Convolution (PGC) 
[90]. YOLOv7-Tiny conducts a series of ablation experiments 
on YOLOv7, which runs faster and uses less memory. The 
model has fewer parameters and is suitable for edge GPU 
deployment. Lightweight object detection will be one of the 
main research trends in the future. 

 

B. Multi-task Learning 
To realize information sharing and improve the generalization 

ability of models, researchers introduce multi-task learning into 
the model to replace single-task learning [91]. Especially, the 
multi-task learning method based on CNN can realize the 
convolution sharing of the network structure and improve the 
generalization ability of models. For multiple computer vision 
tasks, object detection, segmentation, and image classification 
are performed simultaneously. More information is obtained, 
and the performance of individual tasks is greatly improved. 
However, while maintaining processing speed and improving 
accuracy, it poses great challenges to researchers. 

 

C. Long-tail Object Detection 
Current object detection models are almost trained based on 

some popular public datasets, such as PASCAL VOC 2007, 
PASCAL VOC 2012, and MSCOCO. However, the number of 
target categories of these datasets is limited and far from 
covering most object categories in the real scene. More 
importantly, the distribution of objects in the real scene is 
extremely unbalanced, showing a long tail distribution which is 
one of the main difficulties that object detection algorithms face 
[92]. To solve this problem, researchers have constructed a 

long-tail distributed dataset containing large-scale object types. 
In addition, some researchers proposed solutions based on 
sample resampling, loss reweighting, and multi-round training 
to overcome the problems caused by data imbalance. 

 

D. Transformer-based Object Detection 
The Transformer-based object detection models have 

achieved huge success, which has injected new vitality into the 
development of this field. The detection performances of these 
models are better than other object detection models based on 
traditional convolutional neural networks such as Faster R-
CNN, SSD, and YOLO. However, the dense computation, slow 
convergence, and spatial complexity lead to the low efficiency 
of transformer-based models. Recent research work has 
alleviated these problems to a certain extent. Many object 
detection networks have started using transformers as 
backbones to replace traditional CNN [93]. 

 

E. Self-supervised Learning 
Self-supervised learning is a machine learning method that 

trains models by utilizing automatically generated labels. Tasks 
from data Self-Supervised Learning are mainly divided into 
five categories in the field of computer vision, including 
generative methods, contrastive methods, predictive methods, 
bootstrapping methods, and regularization methods. Generative 
methods utilize the generator and discriminator to synthesize 
objects and labels to train models [94]. Contrastive learning 
adopts pseudo labels as supervision [95]. Predictive methods 
provide powerful supervised signals for feature learning and 
lead to significant improvements in object detection tasks [96]. 
Bootstrapping methods iteratively train the model by utilizing 
automatically generated labels and the predicted results of the 
model, such as Bootstrap Your Own Latent (BYOL) [97]. 
Regularization methods construct a series of constraints to learn 
features, such as minimizing redundant features [98]. 

 

F. Few-shot and Zero-shot Learning 
Object detection is a kind of data-hungry technology because 

the high accuracy is based on feeding a large amount of data to 
the model. In real scenes, many tasks need to detect objects, 
whose categories have never been seen before in the model. 
This makes conventional training methods no longer 
applicable. Many tasks do not have so much annotation data, or 
the cost of acquiring annotation data is very high. Few-shot 
Learning is the application of Meta-Learning in the field of 
supervised learning, which learns from a small number of 
labeled samples [99]. Zero-shot Learning is to solve the 
problem of unknown object detection [100]. In the training 
process of the model, these unknown categories are invisible, 
and there are no relevant labeled training samples. The 
detection ability in the case of few or zero samples is an 
important symbol of universality for object detection in the 
open world [101]. 
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G. Domain Adaptation  
Domain adaptation contains data from two different domains 

[102]. One domain has labeled data as the source data, and 
unlabeled target data from a new domain. The purpose is to 
adjust our object detection model so that we can perform well 
in both domains. Detectors in specific fields can only achieve 
high detection performance on specified datasets, which have a 
single application scenario and do not have universality in 
multiple fields and scenes. By using semi-supervised 
technology, the performance of domain adaption can be 
effectively improved, but it deceives the distribution changes to 
be more biased towards the source data. The Auxiliary Target 
Domain Oriented Classifier (ATDOC) is introduced as an 
auxiliary classifier into the target data to reduce classifier bias 
and improve the quality of pseudo labels [103]. Yunsheng Li et 
al. proposed a new cross-sample adaptation model that 
simplifies the alignment between two domains [104]. 
 

X. CONCLUSION 

Object detection is an important task of computer vision. With 
the development of object detection technology for more than 
20 years, it has been widely used in industries. However, in the 
process of its development, there are still challenges, such as 
extracting effective and multi-scale features, unbalanced 
positive and negative samples, and label assignment. This paper 
first introduces the background of object detection technology 
and then illustrates three parts involved in the process of 
training and testing, including data preprocessing, network 
construction, and prediction, as well as label assignment and 
loss calculation. We also introduce some popular open datasets 
and performance evaluation indices. Next, one-stage, two-
stage, and end-to-end milestone object detection models are 
introduced by analyzing their advantages and disadvantages. 
Finally, we made prospects for the development trend of this 
area. In summary, although the theoretical research on 
algorithms has made great progress, there is still much room for 
improvement. 
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