UNIVERSITI TEKNOLOGI MARA

TIME FREQUENCY DOMAIN ANALYSIS ON SHOTCRETE BONDING STATE

MAZLINA BINTI RAZALI

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Civil Engineering

October 2014

ABSTRACT

The slope reinforcement issues in tropical soil become challenges to geotechnical engineers in designing the support system in order to prevent the major failures. Some of the major failures of shotcrete such as slope reinforcement are due to stress waves which caused by the vibration from heavy vehicles, rock deformation and shrinkage and also the blasting activity. All these causes may results to shotcrete debonded, thus reflect problems such as corrosion, buckling, fractured and internal voids creation overtime. The debonded shotcrete may cause severe instability problem. Therefore, in situ boring process is needed in order to investigate any young shotcrete that affected by the vibration. However the in situ boring process also may lead to the structural damages, hence will results in additional cost of repair. An effective evaluation and analysis method for these influential factors are required in determining reliable design, safe construction and effective operation in designing the soil support system. This study focuses on determining time-frequency analysis technique for quality control characteristic applied onto tropical soil in Malaysia. The IE and IE-SASW non-destructive test applied to the shotcrete to investigate the bonding state by using an advanced signal-processing technique known as STFT (IE-STFT) and WT (IE-WT). The effect of the bonding state on IE-STFT and IE-WT signal characteristics were obtained through the laboratory and field studies. For time-frequency analysis there are three main factors to be considered i.e. the effect on bonding state, thickness of the shotcrete and curing time. Comparative analysis in all factors are presented and interpreted in the shape of the time-frequency domain contour plot, value of the correlation coefficient, level of dominant frequency, geometric damping ratio and the resonance duration. Both methods were studied and compared in order to determine the suggested technique of non-destructive evaluation. In addition, both techniques also provide a different result based on time-frequency analysis. However, the field test gave more reliable results in supporting selection of technique and therefore it can be concluded as an appropriate technique that can be proposed for practical purposes.

ACKNOWLEDGEMENTS

Bissmillahirrahmanirrahim,

Alhamdulillah. Thanks to Allah SWT, whom with His willing giving me the opportunity to complete this Master Thesis.

First, I am heartily thankful to my supervisor, Prof. Ir. Dr. Hjh Zainab Mohamed and my co supervisor Dr Song Ki Il, whose encouragement, guidance and support from the initial to the final level. The supervision and support that she and he gave truly help the progression and smoothness of my study. The co-operation is much indeed appreciated.

My grateful thanks also go to Mr. Muhammad Azahar Abdul Razak, Mr Arip, Mr Akhbar and all Faculty of Civil Engineering technicians for the cooperation during my laboratory work. I would like to express my deepest thanks to Ir Loke Yan Ho, the Managing Director of GEOCO Sdn Bhd, a subcontractor of the project at Damansara Perdana for their cooperation giving a permission to use the site for my field work testing.

Deepest thanks and appreciation goes to my parents, my husband, research mate, and others for all the cooperation, encouragement, constructive suggestion and full of support for the report completion.

Lastly, thank you very much to all of those who supported me in any respect during the completion of this study direct and indirectly.

TABLE OF CONTENTS

			Page					
AUTHOR'S DECLARATION								
ABSTRACT								
ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS								
				LIST OF ABBREVIATIONS				
				СНА	PTER O	NE: INTRODUCTION		
				1.1	Backgr	ound of Study	1	
1.2	Probler	m Statement	2					
1.3	Objecti	ves	2					
1.4	Signific	cance of Study	3					
1.5	Scope of	of Work	3					
1.6	Limitat	ions of Study	4					
1.7	Thesis	Outline	4					
СНА	PTER T	WO: LITERATURE REVIEW						
2.1	Shotcre	ete Technology	6					
2.2	Shotere	ete Subjected to Vibration	6					
2.3	Elastic	Wave Propagation in Residual Soils	7					
	2.3.1	Theoretical Background of Elastic Wave Propagation	7					
2.4	Signal	Processing For Eastic Wave Propagation	8					
	2.4.1	Time Domain (TD) Waveform and Frequency Domain (FD)						
		Analysis	8					
	2.4.2	Time-Frequency Analysis (TFA) Technique	10					
		2.4.2.1 Short-Time Fourier Transform (STFT)	10					
		2.4.2.2 Wavelet Transform (WT)	11					

	2.4.3	Geometric Damping Ratio and Thickness Determination	12	
2.5	Nondestructive Test (NDT) Methods			
	2.5.1	The Impact Echo (IE) Test	14	
		2.5.1.1 Determination Thickness of Shotcrete in IE Testing	15	
	2.5.2	Spectral Analysis of Surface Waves (SASW) Method	17	
2.6	Investigation of Nondestructive Quality Control Technique			
	2.6.1	Short-Time Fourier Transform (STFT)	19	
	2.6.2	Wavelet Transforms (WT)	19	
2.7	Free -	- Free Reasoning Column (FFRC) Test	21	
2.8	Effect	of Impact sources- Force-Time Function	22	
2.9	Summ	nary	24	
СНА	PTER 7	ΓHREE: RESEARCH METHODOLOGY		
3.1	Introd	uction	25	
3.2	Field	Field Testing		
	3.2.1	Site Information	27	
	3.2.2	Impact Echo Test (IE) Setup Procedure	27	
3.3	Laboratory Testing			
	3.3.1	Sampling of Cement Mortar	30	
	3.3.2	Strength and Porosity Testing on Cement Mortar	31	
	3.3.3	Soil Sampling for Classification	31	
	3.3.4	Free-Free Resonant Column Test (FFRC) Setup and Procedure	32	
3.4	Soil Classification			
	3.4.1	Moisture Content	33	
	3.4.2	Liquid Limit and Plastic Limit	34	
	3.4.3	Particle Density	36	
	3.4.4	Shear Box Test	37	
3.5	IE-SASW Experimental Setup and Procedure			
	3.5.1	Procedure used for SASW inversion	41	
3.6	Sumn	Summary		