SOLVING UNIT COMMITMENT WITH WIND POWER USING ARTIFICIAL IMMUNE EVOLUTIONARY PROGAMMING OPTIMIZATION TECHNIQUE

This thesis is presented in partial fulfillment for the award of Bachelor of Electrical Engineering (Hons.) Universiti Teknologi MARA

ACKNOWLEDGEMENT

In the name of ALLAH, The Most Gracious, The Most Merciful and The Most Beneficent. Praise in only ALLAH S.W.T for his blessing upon us. It is with deepest sense of gratitude to ALLAH S.W.T who has given the strength and ability to complete the paper.

I would like to express my countless appreciation and gratitude to my supervisor, En Nazree bin Che Othman for his guidance and ideas as well as advices which has helped me a lot in completing this paper.

I also want express my token of appreciation to my friends and my course mates who have shared their ideas with me in order to help me understand more about this paper.

Last but not least, I would like to say thank you very much to the people who helping me whether directly or indirectly. I just want to say that all of their ideas, support and contribution have made this paper succeed.

iv

ABSTRACT

This project proposes a solution to unit commitment problem with wind power using artificial immune evolutionary programming. The objective of this project is to find the suitable generation scheduling which can minimize the operation cost with subjected to various constrain. The main idea of this project is to integrate the use of Artificial Immune Evolutionary Programming as optimization technique towards Unit Commitment. Other than that, this project also aiming to review the effect of addition wind power to the Unit Commitment problem solution. MATLAB programming language was used to execute the program using 10 set of generator data with several constrain like power balance, and generation limit .The process of Artificial Immune Evolutionary Programming including of initialization, cloning, cost calculation, mutation, sorting and combine and convergences test. The result are shown to verify the performance of Artificial Immune Evolutionary Programming technique

TABLE OF CONTENT

ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENT	vi
LIST OF FIGURE	viii
LIST OF TABLES	iix
CHAPTER 1	1
INTRODUCTION	1
1.0 BACKGROUND OF STUDY	1
1. 1 PROBLEM STATEMENT	2
1.2 OBJECTIVE	2
1.3 SCOPE OF PROJECT	3
1.4 SIGNIFICANT OF RESEARCH	3
1.5 ORGANIZATION OF THESIS	4
CHAPTER 2	6
LITERATURE REVIEW	6
2.1 INTRODUCTION	6
2.2 UNIT COMMITMENT	7
2.3EVOLUTIONARY PROGRAMMING (EP)	8
2.4ARTIFICIAL IMMUNE SYSTEM (AIS)	9
2.5ARTIFICIAL IMMUNE EVOLUTIONARY PROGAMMING (AIEP)	10
2.6WIND POWER	10
CHAPTER 3	12
METHDOLOGY	12
3.0 INTRODUCTION	12
3.1 RESEARCH METHODOLOGY	12
3.1.1 Knowledge acquisition and background studies	12
3.1.2Design of algorithm	13

3.1.3Execution and Construction	13
3.1.4Experiment and Observation	14
3.1.5Evaluation and Analysis	14
3.2 MODELLING THE UNIT COMMITMENT PROBLEM	16
3.2.1On-off state of generator	16
3.2.2Unit Commitment Economic Dispatch	17
3.2.3Unit Commitment Objective Function	17
3.2.4System requirement and generating unit constrain	18
3.3 DATA SPECIFICATION	21
3.3 AIEP TECHNIQUE	24
CHAPTER 4	28
RESULT AND DISCUSSION	28
4.1 Case 1: Trial Analysis	28
4.2 Case 2: Population Analysis	30
4.3 Computational Time	.32
4.4 Best power generation using AIEP optimization technique	35
4.5 Comparison of cost between population size and between case	40
CHAPTER 5	43
CONCLUSION AND RECOMMENDATION	43
5.1 CONCLUSION	43
5.2 RECOMMENDATION	44
REFERENCES	45