SOLVING UNIT COMMITMENT PROBLEM WITH WIND POWER ENERGY USING MULTI AGENT EVOLUTIONARY PROGRAMMING OPTIMIZATION TECHNIQUE

This thesis represented in partial fulfillment for the award of the Bachelor (Hons.) Electrical Engineering

UNIVERSITI TEKNOLOGI MARA

MALAYSIA

MOHD IKHWAN BIN MAHASAN 2010681646

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGY MARA MALAYSIA

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful.

In the name of ALLAH S.W.T., The most Beneficent, The most Merciful. It is with the deepest sense of the Al-Mighty Allah that gives me the strength and ability to complete this research. All good aspirations, devotions and prayers are due to ALLAH whose blessing and guidance have helped me throughout the entire research.

I would like to give my deepest gratitude to my beloved parents, my brothers and sisters for their endless love, prayer, and encouragement during the process of this study.

Special appreciation goes to my supervisor, Mr. Muhammad Nazree Bin Che Othman, for his supervision and constant support during the process of completing this research. His co-operation and guidance is much indeed appreciated. His contribution as a project supervisor so much helps me in completing this final year project.

Sincere thanks to all my friends for their kindness and moral support during the assignment progress until it is fully completed.

Besides, special thank goes to FYP coordinator, Mrs. Wan Noraishah bt. Wan Abdul Munim for her guidance and also thanks to authority of Universiti Teknologi MARA (UiTM) especially from Faculty of Electrical Engineering for providing me with a good environment and facilities to complete this report.

Last but not least, thank you to those who indirectly contributed in this assignment. Thank you very much.

ABSTRACT

This thesis presents an approach to search for an optimal solution for Unit Commitment Problem with wind power generation. The objectives of this research are to find the optimal cost of generation and to review the effect of the presence of renewable energy which is the wind energy in the conventional Unit Commitment problem. Unit commitment involves the scheduling of start-up and shutdown of generating units, an indirect determines the optimum power should be generated by each unit committed over a period of time to meet the required load demand at minimum possible cost. In this study, Multi Agent Evolutionary Programming has been used to solve the optimal unit commitment for 24 hour periods. Multi Agent Evolutionary Programming is a combination of two Artificial Intelligent techniques which are Multi Agent System and Evolutionary Programming. In this research, the Multi Agent Evolutionary Programming technique has been applied with 10 thermal based generator data along with wind power generation. The 10 thermal generator data are obtained from previous research paper while the data for wind power is collected from power forecasting report by National Renewable Energy Laboratory (NREL). This research has considered a few constraints that go along with Unit Commitment problem such as load demand constraint, generator limit, and 10% reserve margin. The comparison of the result obtained is to observe the performance of Multi Agent Evolutionary Programming technique against conventional Evolutionary Programming technique.

TABLE OF CONTENTS

Conter	ts	
DECLARATION		
ACKNOWLEDGEMENT		
ABSTRACT		
TABLE OF CONTENTS		
LIST OF FIGURE		
LIST OF TABLE		
LIST OF SYMBOLS AND ABBREVIATIONS		
CHAPTER 1		
INTRODUCTION		
1.1	INTRODUCTION	1
1.2	RESEARCH BACKGROUND	2
1.3	PROBLEM STATEMENT	3
1.5	OBJECTIVE	3
1.3	SCOPE OF STUDY	4
1.6	SIGNIFICANT OF STUDY	5
1.7	ORGANIZATION OF THESIS	6
1.8	CHAPTER CONCLUSION	7
CHAPTER 2		
LITERATURE REVIEW		
2.1	INTRODUCTION	8
2.2	PREVIOUS RESEARCH	8
2.3	PROPOSED TECHNIQUE	10
2.3	.1 Unit Commitment	10
2.3	.2 Evolutionary Programming	13
2.3	.3 Multi Agent System	16
2.3	.4 Wind Energy	20
2.4	CHAPTER CONCLUSION	21

СНАРТ	TER 3		22
METHODOLOGY			22
3.1	IN	TRODUCTION	22
3.2	RE	SEARCH METHODOLOGY	22
3.2	2.1	Background Study and Literature Review	23
3.2.2		Data Collection	23
3.2	2.3	Design Algorithm	23
3.2	2.4	Construction and Execution	24
3.2	2.5	Experimentation and Observation	24
3.2	2.6	Data Evaluation and Analysis	25
3.3	UC	PROBLEM'S MODELLING	26
3.3	3.1	Load Demand Constraint	26
3.3	3.2	Generator Limit Constraint	27
3.3.3		Spinning Reserve Constraint	27
3.3	3.4	Unit Commitment Objective Function	28
3.4	EP	AND PROPOSED MAEP TECHNIQUE	29
3.4	4.1	Application of EP Optimization Technique to UC Problem	32
3.4.2 Application of MAEP Optimization Technique to UC Problem		35	
3.5	SIN	AULATION DATA	39
3.6	CH	APTER CONCLUSION	42
CHAPTER 4			43
RESULT AND DISCUSSION			43
4.1	IN	IRODUCTION	43
4.2	RE	SULT AND DISCUSSION	43
4.2	2.1	Determination of Number of Trials	44
4.2	2.2	Determination of Number of Populations	45
4.2	2.3	Comparison of Performance between EP and MAEP	47
	2.4	Best Scheduling with the use of Wind Energy using MAEP Optimization	
	chniq		49
4.3	CH	APTER CONCLUSION	54

4.3 CHAPTER CONCLUSION

Ļ