
SPEED CONTROL OF TWO QUADRANT DRIVE USING MODEL ORDER REDUCTION TECHNIQUE

This thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Hons) Electrical UNIVERSITI TEKNOLOGI MARA MALAYSIA

ACKNOWLEDGEMENT

Alhamdulillah and all praises to Allah because of His guidance and grace, I'm able to complete my project. This project is speed control of two quadrant drive using model order reduction technique.

I would like to thank and give my high appreciation to my supervisor Dr. Farid Abidin for his guidance, support and advices in completing this project. I also want to thank to my beloved parents, my friends and all the people who give their contribution, support and help to complete this project and for sharing their knowledge on how to solve the problems.

Also thank to the coordinator final year project Dr. Muhamad Nabil Hidayat and Faculty of Electrical that give the information and guide the students in completing the project.

Lastly, I want to thanks to all friends of Electrical Engineering and the individual who have been involved in completing this project.

ABSTRACT

DC Motor control means direction and speed control of a DC motor. It is very popular until now due to useful speed range, the ability to control to desired speed and also high efficiency in operating. In this thesis a two quadrant DC motor drive is simulated by using Matlab Simulink software. Separately excited DC motor is designed and complete DC drive mechanism achieved. The chopper receives signal from controller and gives variable voltage. The designing of current and speed controller is carried out. Finer controller gain value for the dc drive is obtained for after the proposed technique model order reduction method applied. The model of the drive, the design of the devices and some experimental results are shown and clearly explained.

TABLE OF CONTENTS

CONTENT

PAGE

ACKNOWLEDGMENT	ii
ABSTRACT	iii
TABLE OF CONTENT	iv
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii

CHAPTER 1: INTRODUCTION

1.1 Introduction	1
1.2 Problem Statement	2
1.3 Objectives	3
1.4 Scope of Work	3

CHAPTER 2: LITERATURE REVIEW AND BACKGROUND DETAILS

2.1 Separately Excited DC Motor	4
2.2 Chopper	8
2.2.1 Two Quadrant Chopper	10
2.3 Proportional Integral Controller	11
2.3.1 Current Controller	12
2.3.2 Speed Controller	12
2.4 Model Order Reduction	13
2.5 Previous Research	14
2.5.1 DC Motor Control Using Chopper	14
2.5.2 A Simple Two Quadrant DC Motor Controller	15

CHAPTER 3: METHODOLOGY

3.1 Project Work Flow	16
3.2 System Flowchart	20
3.3 Designing Current Controller	22
3.4 Designing Speed Controller	24
3.5 Model Order reduction Method	26

CHAPTER 4: RESULT AND DISCUSSION

4.1 Result	
4.2 Simulation	31
4.3 Discussion	

CHAPTER 5: CONCLUSION

5.1	Conclusion	
2.1	001101001011	

CHAPTER 6: RECOMMENDATION

5.1 Recommendation for Future Work	
	an an the second se
REFFERENCES	40
APPENDICES	48