ALTERNATING CURRENT/DIRECT CURRENT ENERGY METER

This thesis is presented in partial fulfilment for the award of the Bachelor of Engineering (Hons.) Electrical UNIVERSITI TEKNOLOGI MARA

MUHAMMAD ADIB BIN IDRIS FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA, 40450 SHAH ALAM, SELANGOR, MALAYSIA JULY 2013

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the most Merciful and most Gracious

In such a great of opportunity, I would like to express my acknowledgement and appreciation to those who had contributed and assisted in completing my Final Year Project.

A special acknowledgment is reserved for the project supervisor, Professor Dr. Ahmad Maliki Omar for the coaching and guidance throughout the project completion. My appreciation also goes to my family who has been so patient supports me all these years. Thanks for their encouragement, love and emotional support that had given to me.

I would also like to thank all lecturers from Electrical Engineering faculty for their support and involvement, whether direct or indirectly participation in ensuring the smooth progress of my project.

iv

ABSTRACT

Efficient use of energy becomes more crucial when increase in the cost of energy is observed. Since energy management is required to define the amount of consumed/generated energy in a specific period of time, utilization of Energy Meters is essential. This thesis presents the design of the energy meter using Arduino Uno kit. The main objective is to measure and display the amount of consumed/generated energy in a specific period of time. This project involved both hardware and software programming activities. It determined the current by using Hall Effect current transducer. It also measures the input voltage by using voltage divider. The integrated energy will be displayed in a 16x2 backlight LCD as kilowatt hour (kWh). The sampling time is 60 seconds. In the software activity, the code is constructed in C programming and was used on the Arduino Uno. Periodic readings of energy meter establishes energy used during a cycle.

TABLE OF CONTENTS

LIST OF TITLE	PAGE
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGMENT	iv
ABSTRACT	V
TABLE OF CONTENT	vi
LIST OF FIGURES	viii
LIST OF TABLES	ix
LIST OF ABBREVIATIONS	x

CHAPTER ONE: INTRODUCTION

1.1	OVERVIEW	1
1.2	PROBLEM STATEMENT	3
1.3	OBJECTIVES	3
1.4	SCOPE OF WORK	3
1.5	THESIS OUTLINE	4

CHAPTER TWO: LITERATURE REVIEW

2.1	ENERGY	5
2.2	ALTERNATING CURRENT (AC)	7
2.3	DIRECT CURRENT (DC)	7
2.4	ENERGY METER APPLICATION	8
2.4.1	KILOWATT-HOUR	9
2.4.2	POWER	9
2.4.3	VOLTAGE	9
2.4.4	CURRENT	9

CHAPTER THREE: METHODOLOGY

3.1	INTRODUCTION	10
3.2	PROJECT DESCRIPTION	12
3.3	PRINCIPLES OF OPERATION	14
3.4	PROJECT IMPLEMENTATION	14
3.4.1	HARDWARE IMPLEMENTATION	15
3.4.1.1	ARDUINO UNO MICROCONTROLLER	15
3.4.1.2	LIQUID CRYSTAL DISPLAY	17
3.4.1.3	VOLTAGE SENSOR	18
3.4.1.4	HALL EFFECT CURRENT SENSOR	19
3.4.1.5	RESISTOR	20
3.4.2	SOFTWARE IMPLEMENTATION	21
3.4.2.1	ARDUINO DEVELOPMENT ENVIRONMENT	21
3.4.2.2	SOFTWARE FLOWCHART	22

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	INTRODUCTION	23
4.2	RESULT	24
4.3	DISCUSSION	30
4.4	PROBLEM ENCOUNTERED AND SOLUTION	32

CHAPTER FIVE: CONCLUSIONS

5.1	CONCLUSIONS	36
5.2	RECOMMENDATIONS	37

REFERENCES	38
APPENDICES	39