PROTEUS BASED SIMULATION DESIGN OF PORTABLE CHARGE CONTROLLER

This thesis is presented in partial fullfillment of the requirement for the award of the Bachelor of Electrical Engineering (Hons) UNIVERSITI TEKNOLOGI MARA (UiTM)

MOHAMAD HAZWAN BIN MOHAMAD BAKI FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, MALAYSIA JULY 2013

ACKNOWLEDGEMENT

In the name of ALLAH, the most kind and merciful and praise be upon the prophet MUHAMMAD S.A.W

Assalamualaikum w.b.t.

First and foremost, all the graciousness to Al-mighty Allah s.w.t, for Him I am here as the completion of these Final Year Project thesis has been a monumental accomplishment in my academic career. I am thankful for this opportunity to recognize and acknowledge all those that help me throughout the process of completion of this project.

The author would like to thank Professor Madya Puan Pauziah Binti Mohd Arsad for her support, advices, motivation and guidance in completing this project. Not to be forgetting, millions thanks for my families especially to my parents, my best friends and my classmates for their supporting for this project.

These thanks also go to people who give their contribution and also continuous assistance in every aspect either directly or indirectly involve in contributing ideas.

i

ABSTRACT

This thesis presents design of portable charge controller by using Proteus software. Charge controller is designed to charge a battery with rating voltage of 12V and has the ability to indicate its fully charged condition. The charge controller is powered by common household socket outlet. A rectifier circuit is designed to make the input current and voltage suitable to be applied to the charge controller. The results of simulation based on battery capacity indicator and output voltage stability are obtained. A prototype was constructed and tested for their capability to indicate fully charging condition of battery and voltage stability of the output. The results obtained showed that the design of charge controller works perfectly in simulation.

TABLE OF CONTENTS

CONTENT				
Acknowledgement				
Abstract				
Table of Contents				
List	of Figure	es	v	
List	of Table	S	vii	
List of Abbreviations				
List of Symbol				
CHA	PTER	1: INTRODUCTION	1	
1.1	Gene	ral Introduction	1	
1.2	Proje	ct Background	2	
1.3	Objec	ctives of the project	2	
1.4	Scope	e of the project	3	
1.5	Thesi	is Outline	3	
CHA	PTER	2: LITERATURE REVIEW	4	
2.1	Introc	duction	. 4	
2.2	Charg	Charge Controller		
	2.2.1	Charge Controller Set Points	5	
		2.2.1.1 Voltage Regulation (VR) Set Point	5	
		2.2.1.2 Voltage Regulation Reconnect (VRR) Set Point	6	
		2.2.1.3 Low Voltage Load Disconnect (LVD) Set Point	6	
		2.2.1.4 Load Reconnect Voltage (LRV) Set Point	6	
	2.2.2	Charge Controller Design	7	
		2.2.2.1 Shunt Controller Design	7	

		2.2.2.2 Series Control Design	8		
	2.2.3	Advantage of Using Charge Controller	9		
2.3	Proteus Software				
	2.3.1Intelligent Schematic Input System (ISIS) Schematic Capture 10				
	2.3.2Virtual System Modelling (VSM)				
2.4	Full V	Vave Rectifier	12		
	2.4.1	Filtered Bridge Rectifier	13		
2.5	Power	Supply	14		
CHA	PTER 3	3: METHODOLOGY	16		
3.1	Introd	uction	16		
3.2	Projec	et Methodology	16		
3.3	Proteu	is Software Procedure	18		
3.4	Flow of Circuit				
	3.4.1	Rectifier Circuit	23		
		3.4.1.1 Improve Rectification Wave	24		
		3.4.1.2 Efficiency of Bridge Rectifier	29		
	3.4.2	Charge Controller Circuit	30		
3.5	Hardv	vare Development	33		
CHA	PTER 4	4: RESULTS AND DISCUSSION	36		
4.1	Batter	y Indicator Test	36		
4.2	Volta	ge Stability Test	40		
4.3	Hardv	vare Test	40		
CHA	PTER 5	5: CONCLUSIONS	44		
CHA	PTER (5: RECOMMENDATIONS FOR FUTURE WORK	47		
REFERENCES					
APPENDICES					