HORIZONTAL AXIS SOLAR TRACKER WITH TWO LDR

SENSOR

This thesis is presented in partial fullfillment of the requirement for the award of the Bachelor of Electrical Engineering (Hons) UNIVERSITI TEKNOLOGI MARA (UiTM)

HISHAMUDDIN BIN BUYONG FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, MALAYSIA JULY 2013

ACKNOWLEDGEMENT

In the name of ALLAH, the most kind and merciful and praise be upon the prophet MUHAMMAD S.A.W

Assalamualaikum w.b.t.

First and foremost, all the graciousness to Al-mighty Allah s.w.t, for Him I am here as the completion of these Final Year Project thesis has been a monumental accomplishment in my academic career. I am thankful for this opportunity to recognize and acknowledge all those that help me throughout this process.

The project manages to be finish successful with the guide and contribution by the individual who are very helpful. The author would like to thanks Puan Puteri Nor Ashikin Binti Megat Yunus for her support, advices, motivation and guidance in completing this project. Not to be forgetting, millions thanks for my families especially to my parents, my best friends and my classmates for their supporting for this project. Thank also the technician who helped during this project to be successful done.

These thanks also go to people who give their contribution and also continuous assistance in every aspect either directly or indirectly involve in contributing ideas.

ABSTRACT

Solar energy is rapidly gaining notoriety as an important means of expanding renewable energy resources. A solar tracking generating power system is designed and implemented. Solar tracking allows more energy to be produced because the solar array is able to remain aligned to the sun. A tracking mechanism is integrated with an expert controller, sensors and input/output interface, that it can increase the energy generation efficiency of solar cells. In order to track the sun (LDR) sensor light sensitive resistor are used. This is to achieve maximum and optimal solar tracking. A field programmable gate array is applied to design the controller so that the solar cells always face the sun in most of the day time. The operation of the experimental model of the device is based on a DC motor intelligently controlled by a dedicated drive unit that moves a mini PV panel according to the signals received from two simple but efficient light sensors. The performance and characteristics of the solar tracker are experimentally analyzed.

Keywords -LDR, DC Motor, PV Panel

TABLE OF CONTENTS

CONTENT	PAGE
Acknowledgement	i
Abstract	ii
Table of Contents	iii
List of Figures	vi
List of Tables	vii

CHAPTER 1: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	5
1.3	Objectives	6
1.4	Significant of the project	6
1.5	Scope of Project	7
1.6	Thesis organization	8

CHAPTER 2: LITERATURE REVIEW

2.1	Introdu	action	9
	2.1.1	Solar Power Development	6
	2.1.2	Photovoltic Technology	10
	2.1.3	Solar Panel	11
	2.1.4	Solar Tracker Fundamentals	11
	2.1.5	Overview on Tracker Mount Types	12
	2.1.6	Polar	12
	2.1.7	Horizontal Axle	13
	2.1.8	Two Axes Mount Type	14
	2.1.9	Overview of Current Driver Tracker Types	15
	2.1.10	Gas Tackers	15

2.2	Drive	Types	16
	2.2.1	Active Tracker	16
	2.2.2	Passive Tracker	16
	2.2.3	Chronological Tracker	17
2.3	Hardw	vare Components	18
	2.2.1	Solar Panel	18
	2.2.2	Sensors	20
	2.2.3	DC Motor	21
	2.2.4	ATMEGA 16 Microcontroller	22
		2.2.4.1 Pin Configuration	23
		2.2.4.2 Functions of All Pins	23

CHAPTER 3: METHODOLOGY

3.1	Introduction	26
3.2	Operation	
3.3	Project Methodology	28
	3.3.1 Study the Problem	29
	3.3.2 Define the Design Objective	29
	3.3.3 Find the Block Diagram	30
	3.3.4 Select the Circuit Topology	32
	3.3.5 Select the Component Value	34
	3.3.6 Predict Performances	35
	3.3.7 Model/ Simulate	37
	3.3.8 Get Cost Estimate	40
	3.3.9 Test	40
3.4	Measurement Instrument	41

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Introduction	42
4.2	Hardware Results	42
4.3	Experimental Setup	46
4.4	Results	47
4.5	Factors of the Loses	50