LOAD FLOW STUDY BETWEEN COMPARISON NEWTON RAPSHON LOAD FLOW METHOD AND FAST DECOUPLED LOAD FLOW METHOD

Project report is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons) UNIVERSITI TEKNOLOGI MARA (UiTM)

MOHD HAIZILAN BIN HJ. ALIAS Faculty of Electrical Engineering UNIERSITI TEKNOLOGY MARA 40450 SHAH ALAM SELANGOR DARUL EHSAN

ACKNOWLEDGEMENT

Alhamdulillah, thanks to Allah S.W.T the Beneficent, the Merciful, who gives me patience, strength and ability in completing this project and thesis. All perfect praises belongs to Allah alone, Lord of the world. May his blessing be upon prophet Muhammad S.A.W and the members of his family and companies.

This project would not have been successful without the help and encouragement of my wife, family, lecturers and friends. I would like to thank all of those who have contributed to the completion of this project, in particular my project supervisor: Dr. Zuhaina Bt. Hj. Zakaria for his patience, inspiration, contribution of precious ideas, proposals, causal, support, encouragement and constant guidance which has helped me to successfully complete the project and thesis. Needless to say that without his assistance, this project could hardly be finished.

Mohd Haizilan Bin Hj. Alias Faculty of Electrical Engineering Universiti Teknologi MARA (UiTM) Shah Alam, Selangor Darul Ehsan

ABSTRACT

This paper presents the load flow study between comparison Newton Raphson Method and Fast Decoupled Method in order to find a power flow solution at its bifurcation point. The Newton Raphson and Fast Decoupled power flow method are presented for the solution of nonlinear algebraic equation. These techniques are employed in the solution of load flow problem. The conventional Newton's Method was found to be inadequate to obtain the maximum loading point (MLP) or critical point of the power system due to the Jacobian matrix singularity. This problem can be compare by using both method of power flow, which remains well condition at the saddle node bifurcation point due to the convergence of load flow. The method of power flow program is developed using MATLAB programming language base on algorithm of continuation power flow (CPF) technique, which can compute efficiently the parameter at saddle node bifurcation point. A small test system is used for the implementation of this technique and another medium test system is also used for verification of the program used.

TABLE OF CONTENT

CHAPTER

1

2

DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENT	iv
LIST OF FIGURES	vii
LIST OF TABLES	viii
LIST OF ABBREVIATIONS	ix
INTRODUCTION	
1.1 Introduction	1
1.2 Voltage Stability	3
1.3 Objective	4
1.4 Organization of the Thesis	5
POWER FLOW ANALYSIS	
2.1 Introduction	7
2.2 Power Flow Concepts	8
2.3 Classification of Buses	9
2.3.1 Slack Bus or Swing Bus	9
2.3.2 Generator Bus	10
2.3.3 Load Bus	11
2.4 Bus Admittance Matrix	11
2.5 Load Flow Equation	14
2.6 Newton-Raphson Power Flow Solution	16
2.6.1 Newton-Raphson Algorithm	16
2.7 Load Flow Program	19
2.7.1 Lfybus	20

2.7.2 Busout	21
2.7.3 Lineflow	21
2.7.4 Lfnewton	21
2.8 Data Preparation	22
2.8.1 Bus data file – busdata	22
2.8.2 Line data file – linedata	24

FAST DECOUPLED LOAD FLOW METHOD

3.1 Introduction	25
3.2 Fast Decoupled Study	25
3.3 FDL Method	27
3.4 GFDL Method	28
3.5 RSM Method	28
3.6 FSDL Method	29
3.7 Notation	30
3.8 Derivation of Basic Algorithm	31
3.9 Application to Practical Load Flow Solutions	
3.9.1 Iteration Scheme	33
3.9.2 Convergence characteristics	34
3.9.3 Accuracy requirements	36
3.9.4 Numerical results	36

RESULT AND DISCUSSION

4.1 Result and discussion	38
4.2 Test System	38
4.2.1 NRLF using 6-bus	39
4.2.2 FDLF using 6-bus	45
4.2.3 NRLF using 30-bus	51
4.2.4 FDLF using 30-bus	53
CONCLUSION	55