OPTIMAL ECONOMIC DISPATCH USING ARTIFICIAL NEURAL NETWORK

SITI NOR BINTI HJ. MAT RANI

A report submitted in fulfillment of the requirements for the award of the degree of Bachelor of Engineering (HONS) Electrical

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

JANUARY 2012

ACKNOWLEDGEMENT

In the name of ALLAH. S.W.T, the most Beneficent, the most Merciful. It is with the deepest sense of the Al-Mighty Allah that give me strength and ability to complete this project. All good aspirations, devotions and prayers are due to Allah whose blessing and guidance have helped me throughout the entire project.

I would like to acknowledge and express my sincere gratitude towards my supervisor Assoc. Prof. Dr. Zuhaina Hj. Zakaria for her concern, valuable time of consultation and advice, guidance and patience in supervising my project from the beginning until the completion of this project thesis

My appreciation goes to Assoc. Prof. Dr. Titik Khawa Abdul Rahman and Assoc.Prof. Dr. Ismail Musirin for their dedication in advice and willingly gives their ideas and suggestions for completing this project especially in how to use Matlab software to interpret using Artificial Neural Network programming.

Last but not least, my special thanks to all my friends, Nurul Akmal, Azril, Khairul Azlan and Norazlinda for the valuable help and motivation given in completing this project. Most of all to my beloved family, especially my mother and my father who always by my side, thank you for the endless love and encouragement they gave and for being so understanding.

ABSTRACT

This project presents a methodology for solving optimal economic dispatch by using back propagation neural networks. The optimal power flow for each generating units must have total fuel cost at minimum point. For this problem, the total load is varied and the losses for generating units are ignored. There are many conventional method to solve economic dispatch such as Lagrange multiplier method, Lambda iteration method and Newton Raphson method. This paper present the back-propagation neural networks model to carry out instead the conventional Lambda iteration method. The proposed technique was tested on single bus system.

Keywords:

Economic Dispatch (ED), Back-Propagation Method, Lambda iteration method.

TABLE OF CONTENTS

	PAGE
DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	vii
LIST OF SYMBOLS AND ABBREVIATIONS	viii
CHAPTER 1	
INTRODUCTION	
1.1 BACKGROUND	1
1.2 OBJECTIVE	2
1.3 PROBLEM STATEMENT	2
1.4 ORGANIZATION OF PROJECT REPORT	3
CHAPTER 2	
ECONOMIC DISPATCH	
2.1 INTRODUCTION	4
2.2 POWER SYSTEM OPERATIONAL PLANNING	4
2.3 LITERATURE SURVEY	6
2.3 BASIC THEORY OF ED	10
2.3.1 Fuel Cost Function	11
2.3.2 Incremental Fuel Cost	13
2.4 CONSTRAINTS IN SOLVING ED	15
2.5 LAMBDA ITERATION METHOD FOR SOLVING ED	18
2.5.1 Algorithm Of Lambda Iteration Method For Solving ED	18
2.5.2 Flow Chart Of LIM	20

CHAPTER 3

APPLICATION OF ARTIFICIAL NEURAL NETWORK

:	3.1	INTRODUCTION	21	
	3.2	ARTIFICIAL NEURAL NETWORK	21	
		3.2.1 Feedforward Multilayer ANNs	23	
		3.2.2 Structure Of ANN	23	
,	3.3	BACKPROPAGATION ALGORITHM	25	
CHAI	PTE]	R 4		
METI	HOE	OOLOGY		
	4.1	INTRODUCTION	27	
,	4.2	FLOW CHART FOR OVERALL PROJECT	28	
	4.3	FLOW CHART OF ED USING POWER SYSTEM TOOLBOX	30	
	4.4	FLOW CHART FOR ANN PROGRAM	31	
CHAI	PTE:	R 5		
RESU	ЛΤ	S AND DISCUSSIONS		
	5.1	INTRODUCTION	32	
	5.2	PROBLEM: 3 GENERATOR TEST SYSTEMS	33	
		5.2.1 Result for Training	33	
		5.2.2 Result for Testing	38	
		5.2.3 Comparison of Performance	43	
CHA	PTE:	R 6		
CON	CLU	USION AND RECOMMENDATION		
	6.1	CONCLUSION	44	
	6.2	RECOMMENDATION	45	
REFE	EREI	NCES	46	
APPE	END	IX A		
APPE	END	IX B		
APPE	END	IX C		
APPENDIX D				
APPF	END	IX E		
APPENDIX F				