SOLVING ECONOMIC DISPATCH USING ANT COLONY OPTIMIZATION (ACO)

This thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Honours) UNIVERSITI TEKNOLOGI MARA

NUR HAZIMA FAEZAA BT. ISMAIL Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR DARUL EHSAN

ACKNOWLEDGEMENT

There are numerous people I must thank that have helped me through the course of my graduate studies. I would like to express my sincere thanks to Dr. Ismail Musirin, PhD, MSc, B. Elect. Eng (Hons) MIEEE, PES, CIS, my supervisor. His motivation and encouragement kept me going throughout this thesis. His patience and support have been invaluable towards the completion of this work. Without his constant support, this project would never have come to fruition.

I am indebted to all my esteemed universities for helping me in various ways. I am most grateful to En. Mohd. Rozely Khalil, MSc, B. Elect. Eng (Hons), discussing and sharing his ideas with me.

Finally, I would like to thank my parents, En. Ismail bin Abd. Karim and for their constant support both emotionally and financially, in completing this project. I sincerely appreciate their patience and understanding while waiting for me to complete my degree. Without their overwhelming positive influence on my life, I would not have been able to achieve my goals.

ABSTARCT

Ant Colony Optimization (ACO) is a meta-heuristic approach for solving hard combinatorial optimization problems. The inspiring source of ACO is the pheromone trail laying and following behavior of real ants which use pheromones as a communication medium. In analogy to the biological example, ACO is based on the indirect communication of a colony of simple agents, called (artificial) ants, mediated by (artificial) pheromone trails. The pheromone trails in ACO serve as distributed, numerical information which the ants use to probabilistically construct solutions to the problem being solved and which the ants adapt during the algorithm's execution to reflect their search experience.

TABLE OF CONTENTS

CONTENTS

PAGE

Declaration	i
Acknowledgement	ii
Abstract	iii
Table of contents	iv
Symbols and abbreviations	vii

CHAPTER

PAGE

1.0 INTRODUCTION

1.1 Background	1
1.2 Scope of Work	2
1.3Organization of the thesis	2

2.0 POWER FLOW ANALYSIS

2.1 Introduction	3
2.2 Power Flow Solution	4
2.3 Power Flow Programm	5
2.3.1 Lfybus	5
2.3.2 Busout	6
2.3.3 Lineflow	6
2.3.4 Lfnewton	6
2.4 Newton-Raphson Method	6
2.5 Data preparation	10

CHAPTER

3.0 ECONOMIC DISPATCH

3.1 Introduction	11
3.2 Economic Dispatch neglecting losses and no generator limits	11
3.3 Economic Dispatch including the losses	12
3.4 Effect of Inequality Constraints	13

4.0 ANT COLONY OPTIMIZATION (ACO)

4.1 Introduction	14	
4.2 Behavior of Real Ants	14	
4.3 The Abstract Algorithm	17	
4.4 A simple Ant Colony Algorithm	17	

5.0 MATLAB Progaramming

5.1 Introduction	19
5.2 The MATLAB System	20
5.2.1 Development Environment	20
5.2.2 The MATLAB Mathematical Function Li	brary 20
5.2.3 The MATLAB Language	21
5.2.4 Graphics	21
5.2.4 The MATLAB Applications Programm Ir	nterface 21
5.3 Flow Control	22
5.3.1 If statement	22
5.3.2 Switch and case	23
5.3.3 For	23
5.3.4 While	24
5.3.5 Continue	25
5.3.6 Break	25