IMPLIMENTATION OF SINGLE-PHASE MATRIX CONVERTER AS INVERTER CONTROLLED USING PIC

This thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Honours) UNIVERSITI TEKNOLOGI MARA MALAYSIA

NAZRUL HAMIZI BIN ADNAN Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 Shah Alam Selangor Darul Ehsan

ACKNOWLEDGMENT

Thanks to Allah who has given me the strength and ability to completed this final project and thesis. With this opportunity I would like to express a special gratitude to my project supervisor Mr. Mustafar Kamal Bin Hamzah for the guidance and support throughout the development of this project. I would also like to express my utmost gratitude to Dr. Ahmad Maliki Bin Omar, Mr Zahirrudin and all Research Assistance for their help and all who have been involved directly or indirectly.

Not forget a million of thanks My Mother Zainab Bte Md Zin, My Father Adnan Bin Masri, Brothers and Sisters Norazilah Bte Adnan and Husband, Saiful Hasidi Bin Adnan, Norhidayah Bte Adnan, Mohd Khairul Izuan Bin Adnan and Mohd Shahrin Bin Adnan. Also to beloved Salizawati Bte Abdul Samat and all my friends who gave me support and contribution to finish this project. May Almighty Allah bless and reward them for their generosity.

ABSTRACT

A new method of matrix converter using PIC technique is presented. The controller is developed by Programmable Interface Controller (PIC) in this system. This system covers by IGBTs based system. One of the converter topology is inverter application. Inverters is main application to produce output in AC when an input in DC Supply. The most important element of SPMC is the switching strategy for the four-quadrant switches. The switching strategy will result in the input source being converted to the desired output through the SPMC. SPWM is used as the switching technique for the four-quadrant switches. The switching technique will result in the selective four-quadrant switches. The switching technique will result in the selective four-quadrant switches ON and OFF only at appropriate time. Applying the switching strategy and the switching technique to the controller will produce the desired output that is synthesized from the input source of the SPMC. The laboratory model of the converter is developed and tested. The experimental result is presented.

TABLE OF CONTENTS

Declaration	i
Acknowledgement	ii
Abstract	iii
List of Figures	iv
List of Tables	vii
List of Abbreviation	viii

CHAPTER		DESCRIPTION	PAGE
1	INTR	RODUCTION	
	1.1	Introduction	1
	1.2	Objective	3
	1.3	Scope of the thesis	3
	1.4	Organization of the thesis	4
2	MAT	RIX CONVERTER	
	2.1	Introduction	5
	2.2	Matrix Converter as Power Converters	5
	2.3	Single Phase Matrix Converter	8
		2.3.1 SPMC Circuits	9
		2.3.2 SPWM Control Signals	11
		2.3.3 Driver Circuits	14
		2.3.4 Input Source	14
		2.3.5 output	15
	2.4	SPMC Operation	15
		2.4.1 Switching Strategy 1	15
		2.4.2 Switching Strategy 2	18

2.5	DC-AC SPMC		22
	2.5.1	DC-AC SPMC Switching Strategy	22
	2.5.2	IGBT Switching Technique	24

SWITCHING DEVICES

3

4

3.1	Introduction		
3.2	Inverte	er Operation	27
	3.2.1	Voltage Source Inverter	27
3.3	The Cl	hoice of Switching Device	28
	3.3.1	Thyristors	29
	3.3.2	Gate Turn-OFF Thyristors (GTO)	29
	3.3.3	Bipolar Junction Transistor (BJT)	30
	3.3.4	Metal Oxide Silicon Field Effect Transistor	
		(MOSFET)	30
	3.3.5	Insulated Gate Bipolar Transistor (IGBT)	32
3.4	The Summary of Commonly Available Power Switches		
3.5	Bi-directional (Four-quadrant) Switch Configurations 33		

COMPUTER SIMULATION

4.1	Introd	uction	35
4.2	Simula	ation of DC-AC SPMC	35
4.3	Driver	r Simulation (Pspice and MatLAB)	36
	4.3.1	Output Simulation (Pspice and MatLAB)	37
4.4	Main	Simulation for All Driver (Pspice and MathLAB)	39
4.5	Digita	l SPWM Concept and Design	43
	4.5.1	PSPICE and MatLAB as Modeling to Produce	
		SPWM	44