A COMPARATIVE STUDY FUZZY LOGIC CONTROLLER AND PROPORTIONAL INTEGRAL DERIVATIVE ON BUCK DC/DC CONVERTER

This project thesis is presented in partial fulfillment for the award of the

Bachelor in Electrical Engineering (Hons)

UNIVERSITI TEKNOLOGI MARA (UITM)

RIZAL BIN ISA Faculty of Electrical Engineering 40450 Shah Alam, Malaysia MAY 2009

ACKNOWLEDGEMENTS

All praises be to mighty Allah S.W.T., the Most Gracious, Most Merciful and Most Beneficent for giving me strength and blessing throughout the entire research and completion of this project. Peace upon our Prophet Muhammad S.A.W. who has given light to mankind.

Firstly, I would like to express my sincere appreciation to my supervisor Mr. Nik Fasdi bin Nik Ismail, for his support, belief, patience, fairness, and for his feedback. I have to thank him for many opportunities and knowledge he has given to me over the year.

Also I would like to thank to my employer, Advanced Technology Training Centre, Shah Alam for their support in my study.

My gratitude also goes to staffs and friends, who have been so supportive of the type of work that I do.

Deep appreciation to my wife and family for their support, prayers, and love nurturing me to be who I am today.

ABSTRACT

The switching power supply market is shows potential quickly in today's modern world. Design engineers are not always supplied with the desired amount of voltage they need in order to make their design work. As a solution, controller is added to the system to achieve a simple digital control circuit for regulating the output of the dc-dc converter. This thesis presents a comparative study of Fuzzy Logic Controller and Proportional Integral Derivative Controller on Buck DC/DC Converter. The objective of this thesis is to compare the performance between Fuzzy Logic Controller and Proportional Integral Derivative Controller to improve the performance of DC/DC Converters. The evaluation of the output has been carried out and compared by software simulation using MATLAB. Fuzzy logic controller has been implemented to the system by developing fuzzy logic control algorithm The signals will be processed based on the fuzzy logic rules-based and produce the output. The output will update the duty cycle of the system. This process will continue until it reached the steady-state condition.

TABLE OF CONTENTS

ITEMS		PAGE
DECLARATION		i
DEDICATION		ii
ACKNOWLEDGE	MENTS	iii
ABSTRACT		iv
TABLE OF CONT	ENTS	v
LIST OF FIGURE	S	vii
LIST OF TABLES		viii
LIST OF SYMBOL	S AND ABBREVIATIONS	viii
ABBREVIATIONS		iv
	2	IA
CHAPTER 1:INT	RODUCTION	1
1.0	Introduction	1
1.1	Power Electronic Converters	2
1.2	Buck Converter	2
1.3	Buck Circuit Operation	3
1.4	Transient Response	9
1.5	Power Electronic Devices	16
	1 5 1 Common Power Semiconductor Devices	16
	1.5.2 Diodes	17
	1 5 3 MOSEET/Switch	17
16	Pulse-Width Modulation	18
1.0	Objectives	18
1.7	Thesis Structure	10
1.0		17
CHAPTER 2:LITH	CRATURE REVIEW	20
2.0 Introduction		
CHAPTER 3: ME	THODOLOGY	22
3.0	Introduction	22
	3.0.1 Fuzzy Logic Controller (FLC)	22
	3.0.1.1 Derivation of Fuzzy Logic Controller	
	for DC/DC Converter	24
	3.0.1.2 Continuous and Digital Controller	28
	2 A 2 Description of Later 1 Desiretion Operation (DIDC)	20
	3.0.2 Proportional Integral Derivative Controller (PIDC)	30
	3.0.2.1 PID Theory	31
3.1	Design Modelling And Simulation	36
	3.1.1 Introduction	36
3.2	Development Fuzzy in MATLAB	36
	3.2.1 Introduction	36
3.3	Fuzzy Inference System (FIS)	37
3.4	Design Calculation and Consideration	37
	3.4.1 Designing Power Switch for Buck Converter	37
	3.4.2 Designing the Fuzzy Controller	37
	3.4.3 Design of Overall System	41

3.4.3 Design of Overall System

CHAPTER 4: RESULTS AND DISCUSSIONS				
4.0	Introduction		43	
	4.1	Results	43	
	4.1.1	Rise Time Graph	44	
	4.1.2	Peak Time Graph	45	
	4.1.3	Settling Time Graph	45	
	4.1.4	Peak Overshoot Ratio (POR) Graph	46	
	4.1.5	Voltage Deviation Graph	56	
	4.1.6	Comparison Simulation Results Between		
		FLC and PIDC	47	
CHAPTER 5: CO	NCLUS	ION AND RECOMMENDATION		
FOR FUTUREWORK				
5.0	Concl	usion	50	
5.1	Autho	or's Contribution	51	
5.2	Recon	nmendation for Future Work	51	
APPENDIXES				
Appendix A – Circuit Simulation in MATLAB				
Appendix B – Mean Output Voltage				

REFERENCES

54