LOSS MINIMIZATION AND VOLTAGE STABILITY ENHANCEMENT IN POWER SYSTEMS USING STATIC VAR COMPENSATOR AND TAP CHANGING TRANSFORMER

This thesis is presented in partial fulfillment for the award of the Bachelor in Electrical

Engineering (Hons)

Of

UNIVERSITI TEKNOLOGI MARA (UITM)

NURUL NADIAH BINTI MOHD HUSIN

Faculty of Electrical Engineering

University Teknologi Mara

40450, Shah Alam, Selangor

Malaysia

JUN 2009

ACKNOWLEDGEMENT

Praise to Allah S.W.T, The All Mighty for the blessing and mercy given to onto me to complete this project. Peace upon our prophet Muhammad S.A.W, who has given light to mankind.

Firstly, I would like to express my gratitude to my project advisor, **PM Wan Norainin bt Wan Abdullah** for her guidance, support and advice during this project undergoing. Her effort and willingness to sacrifice her golden time to guide me in all aspect of final year project in order to complete the task within the specified time frame.

A special thanks to my beloved parents, Mohd Husin Mohd Yusof and Hanizam Md Yusuff, and also my siblings for their love, patience, guidance, wisdom and a great support to be the best that I can be.

Last but not least, to my lecturers and friends for their continuous support towards me for providing advice, guidance and encouragement directly or indirectly throughout my course and in completing this project. Due to all the given cooperation and support, I was able complete my final year project smoothly within the time frame. Thank You.

Nurul Nadiah binti Mohd Husin Faculty of Electrical Engineering Universiti Teknologi MARA(UiTM) Shah Alam, Selangor Darul Ehsan

ABSTRACT

This paper describes the effect of the reactive power compensation by using static var compensator(SVC) and tap changing transformer in minimize losses and maintaining the voltage profile of the power systems.

The weakest bus is determined by the sensitivity index method. Then the static var compensator is installed at the weakest bust and reactive power is increased. The tap changing transformer is combined to minimize losses and voltage stability. The proposed method was applied to 14-bus and 30-bus IEEE systems is to show its feasibility and capability. All simulation was done by using the MATLAB version 7.5 programming.

Keywords:

Static var compensator, tap changing transformer, voltage stability, sensitivity index, reactive power compensation.

TABLE OF CONTENT

CHAPTER

1	INTRODUCTIONS				
	1.0	Introduction			
	1.1	Objective			
	1.2	Review			
		1.2.1 Power Flow Analysis	2		
		1.2.2 Static Var Compensator (SVC)	2		
		1.2.3 Tap Changing Transformer	2		
		1.2.4 Voltage Stability	3		
		1.2.5 Sensitivity Index (SI)	3		
	1.3	Scope of Work			
	1.4	Thesis Overview	4		
2	THEORETICAL BACKGROUND				
	2.0	Introduction	5		
	2.1	Newton Raphson Method	5		
		2.1.1 Power Flow Equation	5		
		2.1.2 Newton Raphson Power Flow Method	6		
	2.2	Power Flow Program using Matlab Programming			
	2.3	Index Formulation	13		
3	REACTIVE POWER COMPENSATION CONCEPT				
	3.1	Static Var Compensator (SVC)			
	3.2	Tap Changing Transformer	16		
4	METHODOLOGY				
	4.0	Introduction			
	4.1	Total Loss Analysis	20		
	4.2	Voltage Stability Analysis	21		

RESULTS AND DISCUSSION

5.0	0 Introduction				
5.1	Systems Performance without SVC				
5.2	Sensitivity Index				
5.3	Sizing of SVC and Tap Changing Transformer for Loss				
	Minimiza	tion	27		
5.4	System Performance with SVC and Tap Changing Transformer				
	for Voltag	ge Stability	32		
CO		N AND FUTURE DEVELOPMENT			
6.0	Conclusio		36		
6.1		evelopment	36		
0.1	rulure D	evelopment	50		
REFERENCES					
APP	ENDIX A	Power Flow Program of Sensitivity Index For 14-Bus			
		Test Systems	Ι		
APP	ENDIX B	Power Flow Program Of Sensitivity Index For 30-Bus			
		Test Systems	v		
APP	ENDIX C	Power Flow Program by Newton Raphson Method For			
		14-Bus Test Systems	Х		
APP	ENDIX D	Power Flow Program by Newton Raphson Method For			
		30-Bus Test Systems	XII		
APP	ENDIX E	Results Power Flow Program by Newton Raphson			
		Method For 14-Bus Test Systems	XV		
APP	ENDIX F	Results Power Flow Program by Newton Raphson			
		Method For 30-Bus Test Systems	XX		