Investigation on the Effect of Bismuth Concentration Towards Radiation Shielding Properties in Ag-embedded Borobismuthate Mixed Ionic Electronic Glass System

Nurul Atika Mohd Khalid¹, Mazwani Mohd Rejab¹, Muhammad Naaim Mansor¹, Rosdiyana Hisam¹

¹Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

*Corresponding Author’s E-mail: rosdiyana@uitm.edu.my

Received: 26 June 2023
Accepted: 15 August 2023
Online First: 21 September 2023

ABSTRACT

In this study, 20Li₂O–xBi₂O₃–(79-x)B₂O₃–1Ag glasses for x=3,5,7,9, and 11 mol % glasses were prepared by using the melt quenching technique to investigate radiation shielding properties of the glasses using Phy-X/PSD simulation program at 15 keV to 15 MeV photon energy range. The radiation shielding parameters were carried out to determine the mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), half value layer (HVL), mean free path (MFP) and effective atomic number (Z_eff). The results showed that the Bi₂O₃ addition has improved overall radiation shielding properties. The MAC of the glass system was increased as Bi₂O₃ concentration increased. The HVL showed that present glass better than standard commercial concretes as lower HVL value indicates better shielding where 11 mol % required a much smaller thickness than 3 mol %. Therefore, sample with highest bismuth content has the most effective radiation protective property. Smaller MFP is most preferable as it suitable for protection materials; indicated the 11 mol % is best candidate for radiation shielding. Lastly, the higher value in Z_eff was contributed by higher atomic number of Bi over B; thus, enhanced protection performance.

Keywords: Glass; Radiation Shielding; Borate; Silver Nano-Particles; Mixed Ionic Electronic

Copyright© 2020 UiTM Press. This is an open access article under the CC BY-NC-ND license
INTRODUCTION

Glass is an amorphous material made from inorganic substances at high temperatures, distinguishing it from other materials whose elements are heated to fusion and then cooled in a rigid state without crystallization. In radiation shielding applications, glasses are preferable to typical concrete or Pb-based materials due to their transparency to visible light. Various types of glass, such as borate, silicate, boro-silicate, phosphate, and tellurite-based glass, have been developed by scientists and researchers over several decades to generate high-quality radiation shielding glass [1].

Glass network formers are the oxides that form the backbone of the network. Borate is commonly employed as a glass former due to its chemical and thermal resistance, due to the interconnected BO$_3$ units. Borate can readily alter its oxidation state into BO$_4$ tetrahedral structures, which makes it an excellent host for metal ions. However, borate’s low effective atomic number makes it unsuitable for use in shielding applications by itself [2]. Interestingly, the attenuation capabilities of glasses can be improved by doping them with heavy metal oxides (HMOs), or metal oxides with high densities [2]. Heavy metal-bismuth oxide (Bi$_2$O$_3$) can act as a glass intermediate which can switch role between glass modifiers or network which may increase stability, lower the temperature process, and inhibit moisture [3]. Previously, the addition of Bi$_2$O$_3$ in TeO$_2$-based glasses is significant because of their effectiveness in minimizing unwanted occupational and public radiation exposure in medical settings, as well as the clear view they provide when appropriately used during the using of diagnostic radiological facilities, mobile shields, and eye wears [4].

Besides that, the effect of alkali oxides and transition metal ions addition into glass former oxides such as tellurite, borate, and phosphate may induce mixed ionic electronic effect (MIE) which have been previously reported such as 10ZnO-xBi$_2$O$_3$-(90-x)B$_2$O$_3$ [5], (65-x)V$_2$O$_5$-xLi$_2$O-20TeO$_2$-15Bi$_2$O$_3$ [6] and Bi$_2$O$_3$-Fe$_2$O$_3$-P$_2$O$_5$ [7]. Ionic conduction in glasses is contributed by monovalent alkali metal cations that travel through the oxygen-free sites of the glass network, whereas electronic conductivity is attributed to transition metal oxide via the polaron-hopping mechanism. Transition metal oxide can contribute to electrical conduction due to the features that allow it to exist in two oxidation states [8]. Previous study
has found that mixed ionic-electronic glasses, such as Li$_2$O-V$_2$O$_5$-TeO$_2$ and Na$_2$O-V$_2$O$_5$-TeO$_2$ have conductivity minimums, which reflect linked behavior between ionic and electronic conductivity of the glasses [9].

Radiation shielding has been widely used in various fields such as medical diagnostic lab windows and doors, X-ray rooms and CT scans, scintillators, radiation therapy chambers, and space technology [10]. Transparent materials such as glass are significant as shielding materials, especially for radiotherapy room and imaging facilities [4]. Furthermore, bismuth-based glasses are used to replace lead-based glasses in the application of radiation shielding materials due to bismuth's larger atomic mass number, Z that associated with radiation attenuation and also less toxic [11]. In comparison to lead-silicate-based glass, adding Bi$_2$O$_3$ to silicate-based glass has resulted in greater density material with better shielding capabilities. In addition, a study that incorporates Bi$_2$O$_3$ in a zinc-borate glass system by Yasaka et al. [1] has showed that raising the quantity of bismuth oxide in the zinc-borate glass system can improve the mass attenuation coefficient. Moreover, the shielding properties of the transparent Bi$_2$O$_3$–B$_2$O$_3$–TeO$_2$ glass system have been compared to previously studied lead glass as a better shielding material option due to the lead-related problems such as high toxicity. On top of that, previous research reported that the presence of silver (Ag) nanoparticles in the glass matrix will enhance the radiation shielding ability of a material through better particle dispersion and larger surface area as it is expected that the incoming photon will be attenuated better due those reasons [12].

Nonetheless, the addition of electronic and ionic carriers in glass has resulted in an anomalous trend in other studied properties. Therefore, it is intriguing to evaluate the effect of MIE on the radiation shielding properties. In this current study, we attempted to study the effect of bismuth oxide increment on the radiation shielding of 20Li$_2$O–xBi$_2$O$_3$–(79-x)B$_2$O$_3$–1Ag glass for x = 3, 5, 7, 9 and 11 mol %.
EXPERIMENTAL DETAILS

20Li2O–xBi2O3–(79-x)B2O3–1Ag mixed ionic electronic glass system for x = 3,5,7,9, and 11 mol % were prepared using the melt quenching method. High purity (>99%) raw materials were used such as lithium carbonate (Li2CO3), bismuth(III)oxide (Bi2O3), borone oxide (B2O3) silver (I) chloride (AgCl). The chemical powders were weighed accordingly using the analytical balance. Then, the mixtures were grinded for an hour using agate mortar and pestle to achieve homogenous. Then, the mixture was put in an alumina crucible hence melted in the electric furnace at a temperature of 1100 °C for an hour. The mixture was then quenched into a pre-heated stainless-steel mold hence annealed in at 350 °C for 2 h and eventually, cooled to room temperature.

Phy-X/PSD simulation program was used for calculating the important radiation shielding parameters accurately ranging from 0.015 to 15 MeV of photon energies [13]. Parameters such as mean free path (MFP), effective atomic number (Z_{eff}), half-value layer (HVL) and etc. are significant to define the glass’s potential as radiation shielding materials.

RESULTS AND DISCUSSIONS

Mass attenuation coefficient (MAC)

The evaluation of the mass attenuation coefficients of glass with varying concentrations of Bi2O3 at various photon energies were calculated using the intensity of incident and transmitted (I) gamma rays at a given energy level abiding Beer-Lambert law as according to Equation (1) [14]:

\[I = I_0 e^{-(\mu/\rho)t} \]

where I and I_0 are the transmitted and initial intensity of the radiation/energy, respectively; t is the sample thickness and (\mu/\rho) is the mass attenuation coefficient (MAC). Since MAC defines the ability for a material to attenuate radiation, a greater value denotes a more effective shield [2,15]. The MAC was used to describe penetration and interaction of photon with
the materials and can be calculated using Equation (2) as follow[5]:

\[
MAC = \mu_m = \frac{\mu}{\rho} = \sum_i W_i \left(\frac{\mu}{\rho}\right)_i
\]

(2)

where \((\mu/\rho)_i\) is the mass attenuation coefficient of its constituent element and \(w_i\) is the weight fraction of its constituent elements in the glass sample.

The mass attenuation coefficient results for the 20Li\(_2\)O-xBi\(_2\)O\(_3\)-(79-x)B\(_2\)O\(_3\)-1Ag glasses system, with increasing bismuth contents \((x = 3, 5, 7, 9\) and 11 mol \%) against photon energy were shown in Figure 1. In general, Figure 1 portrayed the MAC value of all glass samples decreased as photon energy increased and eventually, plateaued after 5 MeV. This is due to photoelectric absorption, Compton scattering, and pair formation processes that alters the MAC value within this energy range. As the intensity of the incoming radiation increases, more photons are able to travel through the sample, reducing its ability to absorb photons and declined the MAC values [2]. In addition, a peak emerged at around 0.1 MeV and referred as the Bi-absorption edge [16]. In respect to Bi\(_2\)O\(_3\) content, glass with \(x = 11\) mol \% has the highest value of MAC particularly at the lower energy region \((E<0.1\) MeV) and the MAC values decreased as Bi\(_2\)O\(_3\) decreased where maximum values for all the glasses can be observed at the lowest tested energy \((0.015\) MeV) that equal to 21.383, 31.150, 39.192, 45.930 and 51.657 cm\(^2\)/g for \(x = 3, 5, 7, 9\) and 11 mol \% glasses, respectively. This is due to the dominant process of photoelectric effect that heavily relies on the atomic number of glass composition at lower region photon energy [17]. Therefore, it can be inferred that the glass samples are most effective at lower energies, with 11 mol \% being the most effective, and as energy increases, their shielding ability becomes less effective. In short, \(x = 11\) mol \% glass sample has greater attenuation capabilities than the other investigated samples.
The mass attenuation coefficient results for the 20Li$_2$O–xBi$_2$O$_3$–(79-x)B$_2$O$_3$–1Ag (x = 3,5,7,9 and 11 mol %) glass system against photon energy were shown in Figure 1. The MAC value is the multiplying product of the MAC of its constituent element and \(\sum W_i \frac{\mu}{\rho} \times \rho = \mu \) (Equation 3).

\[
(\mu/\rho) \times \rho = \mu
\]

The graph in Figure 2 clearly indicated a reduction in the LAC values of glass samples against the incoming photon energy from 0.015–15 MeV which almost similar to the MAC (Figure 1). The LAC values for all the 5 different of Bi$_2$O$_3$ content dropped which were due to higher energy photons having greater penetrating power, reducing sample attenuation, and decreasing LAC. Peak at around 0.1 MeV can be attributed to Bi-absorption edge. The greatest values for the glasses are observed at the lowest tested energy which was at 0.015 MeV. In addition, the increment of Bi$_2$O$_3$ content in the glass has impacted the LAC value especially in the lower energy region (E<0.1 MeV) where the trend depicted is as follows: 11 mol% > 9 mol% > 7 mol% > 5 mol% > 3 mol%. For example, the LAC values at 0.02 MeV are 142.166 113.359, 90.083, 68.034 and 40.356 cm$^{-1}$, respectively.
respectively. These results demonstrated a correlation between the LAC values and the density which caused the 11 mol% glass has the highest LAC coming from replacement of lighter borate with heavier bismuth oxide [18]. It can be concluded that the 11 mol % glass sample is the most desirable radiation shielding properties.

Half value layer (HVL)

The half value layer represents the material’s thickness needed to cut the intensity of incoming radiation to half; hence a lower value of HVL indicated a better shield [2]. The HVL values for the glass in this study have been determined due to its significant in determining the radiation shielding ability of a material and can be evaluated via this relation shown in Equation (4) [19]:

\[
HVL = \frac{0.693}{LAC}
\]

(4)

Figure 3 depicted the plot of HVL values against photon energy of 20Li₂O–xBi₂O₃–(79-x)B₂O₃–1Ag glass system (x = 3,5,7,9 and 11 mol %). Based on the Figure 3, the HVL values obtained has increased against increasing photon energy and later, became constant at higher energy region (E>5 MeV) which reflect the declining effectiveness of the glass samples. In general, this indicates that a thicker glass is needed to half the intensity.
of higher-energy incoming photon to retain the glasses shielding efficiency. Moreover, Figure 3 also interpreted that the HVL values across samples have reduced over Bi$_2$O$_3$ addition owing to the increasing density of glass samples where glass sample with $x = 3$ mol % has the highest HVL values and the trend decreased with increasing Bi$_2$O$_3$ concentration, consecutively. These results signify that for the same photon energy, glass samples with $x = 3$ mol % of Bi$_2$O$_3$ content required a thicker glass than $x = 11$ mol % to reduce the intensity of the radiation to half of its original value. This stands that density influences the HVL reading of a material and lower HVL is to chase after which indicates better radiation shield. Therefore, higher density glass of $x = 11$ mol % has the most effective radiation protection property.

In addition, Table 1 has listed the HVL values for 20Li$_2$O–xBi$_2$O$_3$–(79-x)B$_2$O$_3$–1Ag (x = 11 mol %) glass sample where it is relatively lower than all the types of concretes at 0.6 MeV but slightly higher than some previous studied glass thus, it can be stated that the investigated glass is more effective, comparatively. In the light of this result, the 20Li$_2$O–xBi$_2$O$_3$–(79-x)B$_2$O$_3$–1Ag (x = 11 mol %) glass sample can be considered as an alternative for radiation shielding purposes in many areas especially application that needs better transparency.
Table 1: The half value layer (HVL) values of some shielding concretes and commercial glasses at 0.6 MeV

<table>
<thead>
<tr>
<th>Type of material</th>
<th>HVL (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20Li2O–xBi2O3–(79-x)B2O3–1Ag (x = 11mol %)</td>
<td>1.927</td>
</tr>
<tr>
<td>Ordinary concrete [20]</td>
<td>3.867</td>
</tr>
<tr>
<td>Basalt-magnetite concrete [20]</td>
<td>2.899</td>
</tr>
<tr>
<td>Ilmenite concrete [21]</td>
<td>2.629</td>
</tr>
<tr>
<td>xBi2O3 – (0.70 – x)B2O3–0.15SiO2 – Na2O (x=0.5 mol%) [21]</td>
<td>1.080</td>
</tr>
<tr>
<td>xBi2O3 – (80 – x)B2O3 – 15SiO2 – 5TeO2 (x=75 wt%) [21]</td>
<td>1.1929</td>
</tr>
</tbody>
</table>

Mean free path (MFP)

Mean free path is the average distance of a moving particle, such as photon that travels between successive collisions where smaller MFP indicates shorter distance traveled due to increase in the number of collisions between the incoming photon and the materials. Consequently, a smaller MFP is recommended. It can be determined by using Equation (5) [22]:

\[MFP = \frac{1}{\mu} \quad (5) \]

where \(\mu \) is the linear attenuation coefficient (LAC). The MFP plot of 20Li2O–xBi2O3–(79-x)B2O3–1Ag glass system (x = 3, 5, 7, 9 and 11 mol %) against photon energy was plotted in Figure 4. The trend (Figure 4) depicted an increment as the photon energy increase and eventually, started to stagnate at higher energy region. It can be implied that as photon energy increases, the efficiency of the glasses decrease; hence, suggesting a denser material is needed to stop the higher energy phonon from penetrating deeper and worse, pass through the material. Based on the Figure 4, the MFP values were reduced as quantity of Bi2O3 content increased that contributes to higher density glasses owing to heavier bismuth weight and thus, increases the attenuation ability [18]. As such, the density of a material would affect the MFP value and therefore, influences the potential in shielding the incoming radiation where the denser glass sample (x =11 mol %) did best.
Effective atomic number (Z_{eff})

Effective atomic number values are frequently employed to explore the energy-dependent changes of materials obtained during the production of alternative radiation shielding materials. Z_{eff} is the average atomic number of a chemical with a higher value indicates a more effective shield [23]. In this study, Z_{eff} values were computed to determine the photon-material interactions and can be obtained through the total atomic cross section and total electronic cross section that related to Z_{eff} of the compound through Equation (6) [5]:

$$Z_{\text{eff}} = \frac{\sum f_i A_i (\frac{\mu_i}{\rho})_i}{\sum Z_i' (\frac{A_i}{\rho})_i}$$ (6)

where f_i is the fractional abundance of the element i relative to the number of atoms providing that $\sum f_i = 1$, A_i is the atomic weight, and Z_i is the atomic number.

Figure 5 portrayed a generally decrease pattern of the Z_{eff} against increasing photon energy in $20\text{Li}_2\text{O} \text{-xBi}_2\text{O}_3 \text{-(79-x)B}_2\text{O}_3 \text{-1Ag}$ glass system ($x = 3,5,7,9$ and 11 mol%). Typically, materials with greater atomic number, Z will have greater Z_{eff} value. In Figure 5, the Z_{eff} values of the glass samples can be seen to rapidly decrease at lower photon energies.
(E<0.1 MeV) as the photon energy increased. This is because of the change in dominant interaction process takes place from photoelectric effect that largely dependent on atomic number to Compton’s scattering. Particularly, a sharp peak was observed at 0.1 MeV which due to K-absorption edge of Bi [16]. The trends continue to decrease until reached a minimum at 1 MeV before started to rise up again at 2 MeV which can be attributed to dominant interaction process change from Compton’s scattering to pair production that slightly affected by the atomic number of the materials. Besides that, it can be seen that the glass samples with x = 11 mol % of Bi\(_2\)O\(_3\) content has the highest Z\(_{\text{eff}}\) value followed by the others in descending manner of Bi\(_2\)O\(_3\) content due to higher atomic number of Bi (Z=83) over B (Z=5) [16]. Therefore, it can be suggested that increasing Bi\(_2\)O\(_3\) content in the glass system has improved the radiation shielding capability of the samples with respect to the Z\(_{\text{eff}}\) values.

![Figure 5: Plot of effective atomic number (Z\(_{\text{eff}}\)) against photon energy of 20Li\(_2\)O–xBi\(_2\)O\(_3\)–(79-x)B\(_2\)O\(_3\)–1Ag glass system (x = 3, 5, 7, 9 and 11 mol %)](image-url)

Conclusion

Glass samples of 20Li\(_2\)O–xBi\(_2\)O\(_3\)–(79-x)B\(_2\)O\(_3\)–1Ag for x = 3, 5, 7, 9 and 11 mol % were successfully prepared using the melt quenching technique and hence, the radiation shielding properties of the glasses was investigated using Phy-X/PSD simulation program for energy range of 0.01–15 MeV. The glass with the 11 mol% of Bi\(_2\)O\(_3\) content has the highest mass attenuation coefficient (MAC), shortest mean free path (MFP) and lowest half value layer (HVL) as compared with other glass samples due to higher density that coming from heavier bismuth weight compared with boron. Glass sample of 11 mol % Bi\(_2\)O\(_3\) content has demonstrated better radiation shielding quality than some standard concretes based on HVL reading. The effective atomic number (Z\(_{\text{eff}}\)) results have increased over Bi\(_2\)O\(_3\) concentration due to higher atomic number, Z of Bi (83) over B (5); hence, better protection performance. Therefore, it can be concluded that higher concentration of Bi\(_2\)O\(_3\) was more suitable for radiation shielding purposes.

Acknowledgement

The authors express gratitude to the Research Management Centre (RMC) and Universiti Teknologi MARA, Malaysia for assistance throughout the research. This study was financially supported by Universiti Teknologi MARA under the Geran Kolaborasi Entiti Penyelidikan UiTM (KE PU), 600-RMC/KEPU 5/3 (007/2023).

References

CONCLUSION

Glass samples of 20Li$_2$O-xBi$_2$O$_3$-(79-x)Bi$_2$O$_3$-1Ag for x = 3,5,7,9 and 11 mol % were successfully prepared using the melt quenching technique and hence, the radiation shielding properties of the glasses was investigated using Phy-X/PSD simulation program for energy range of 0.015–15 MeV. The glass with the 11 mol% of Bi$_2$O$_3$ content has the highest mass attenuation coefficient (MAC), shortest mean free path (MFP) and lowest half value layer (HVL) as compared with other glass samples due to higher density that coming from heavier bismuth weight compared with boron. Glass sample of 11 mol % Bi$_2$O$_3$ content has demonstrated better radiation shielding quality than some standard concretes based on HVL reading. The effective atomic number (Z_{eff}) results have increased over Bi$_2$O$_3$ concentration due to higher atomic number, Z of Bi (83) over B (5); hence, better protection performance. Therefore, it can be concluded that higher concentration of Bi$_2$O$_3$ was more suitable for radiation shielding purposes.

ACKNOWLEDGEMENT

The authors express gratitude to the Research Management Centre (RMC) and Universiti Teknologi MARA, Malaysia for assistance throughout the research. This study was financially supported by Universiti Teknologi MARA under the Geran Kolaborasi Entiti Penyelidikan UiTM (KEPU), 600-RMC/KEPU 5/3 (007/2023).

REFERENCES

simulation. Results in Physics, 20, 103768.

