CONTINGENCY ANALYSIS OF 15 BUS-BAR SYSTEMS – CONVENTIONAL AND ARTIFICIAL NEURAL NETWORK

Project Report presented in partial fulfillment for the award of the Bachelor of Engineering (Electrical) (Honours) UNIVERSITI TEKNOLOGI MARA

HUZEIR BIN HAMZAH Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR

ABSTRACT

The purpose of this thesis is to provide security for 15 bus bar systems. Any disturbance (line trip) that may occur will be studied in Contingency Analysis. The conventional method, Fast Decoupled Load Flow program is used to provide data from the system.

These data is set as input to Artificial Neural Network, with particular reference to the Back-Propagation Network and Modular Neural Network. The result from Fast Decoupled Load Flow and Artificial Neural Network outputs is then compared.

From the result, it reveals that Artificial Neural Network can be a helping tool for Contingency Analysis. Back Propagation Network can be used to predict power flow of the system with better accuracy compared to Modular Neural Network.

ACKNOWLEDGEMENT

I would like to thank my supervisor, Puan Pauziah Arsad for her kindness, support, guidance, concern, ideas and suggestions during the progress of this project.

I am also indebted to the various help and discussions offered by Puan Noraliza Hamzah.

TABLE OF CONTENTS

CHAPTER	DESCRIPTION	PAGE
1	INTRODUCTION	
	1.1 Introduction	1
	1.2 Project Overview	3
2	LITERATURE SURVEY	
	2.1 Load Flow	6
	2.1 Fast-Decoupled Load Flow Method	9
3	CONTINGENCY ANALYSIS	,
	3.1 Normal Design Contingencies	13
	3.2 Extreme Design Contingencies	14
	3.3 Contingency Flowchart	15
4	ARTIFICIAL NEURAL NETWORK	
	4.1 Artificial Neural Network	16
	4.2 Analogy to the Brain	17
	4.3 Structure Of Neural Network	19
	4.4 Training Rules	22
	4.4 Back Propagation Neural Network	22
	4.5 Modular Neural Network	26
5	PROJECT DEVELOPMENT	
	5.1 Procedure	29
	5.2 Simulation Fast-Decoupled Load Flow	29
	5.3 Simulation Using Back Propagation Neural Network	32

6RESULT AND DISCUSSION6.1 Results and Discussion346.2 Result and Discussion for Contingency Analysis356.3 Back Propagation376.4 Modular Neural Network406.5 Comparison of Results for FDLF, BPN and MNN437CONCLUSION46

RFFERENCES

48

APPENDICES

А	Single Line Diagram for 15-bus system	1
В	Data from Fast-Decoupled Load Flow	1-2
С	Sets or Unnormalised Data For 15- Bus System	1-8
D	Sets of Normalized Data for Training and Testing Process	1-9