DEVELOPMENT OF GRAPHICAL USER INTERFACE FOR LIGHTNING RISK ASSESSMENT BY USING MATLAB

MOHD AZROL BIN SHAARI

A thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Engineering (Hons) Electrical

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

ABSTRACT

This paper presents the development of graphic user interface for lightning risks assessment for a structure. The goal of this research to identify characteristic of lightning structure and evaluated the lightning risk assessment level. This paper presents the development of lightning risk assessment by using Matlab. The goal of this research is to evaluate the lightning risk level. The risk analysis for the structure is based on Malaysian Standard (MS IEC 62305-2). Software has been developed to analyze the lightning risk to the structure. This tool provides interactive and simplifies interface for user to perform the analysis. It is also designed for a user to view lightning risk assessment results of structure and thus will facilitate the user to verify their manual calculation of risk management. The Graphical User Interface (GUI) in Matlab is used for developing the software. Kolej Teratai 4 in UiTM Shah Alam was selected to calculate the risk assessment of human life and cultural heritage. The computation applied in risk assessment depends on $R_X < R_T$. The lightning risk assessment is evaluated by solving risk assessment test using manual calculation method. The comparison results show the accuracy of lightning risk assessment software developed using the Matlab.

ACKNOWLEDGEMENT

Bismillahirrahmanirrahim...

In the name of Allah, The Most Generous and The Most Merciful, with the deepest sense of gratitude to Allah the Almighty for giving me strength and ability to complete my final year project and thesis.

I would like to take this opportunity to express my sincere gratitude and appreciation to my supervisor, Miss Dalina Johari for her enthusiastic support, guidance, advice, comments and assistance towards the accomplishment of this research work and in the preparation of the project. I would also like to thanks the Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), Malaysia for allowing me to fully utilise the necessary facilities during my studies and the Department of Facility Centre Management of UiTM for the building plan. Finally thanks for my family, especially my parent Shaari Hassan and Gayah Deraman. Without her encouragement, I would not have finished the degree, for all the guidance, support and advice provided to me throughout the final year project and thesis.

I would also like to express my gratitude to all the people who have given me their support, advice and encouragement either directly or indirectly throughout my course in UiTM.

Last but not least, I am also would like to express my appreciation to my beloved family, friends and anybody who are involved directly or indirectly for their support and devices during completing my final year project.

Mohd Azrol Shaari

Jan 2014

TABLE CONTENTS

CHAPTER

PAGE

ABSTRACT	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vii
LIST OF TABLES	viii
LIST OF ABBREVIATION	x

CHAPTER 1: INTRODUCTION

1.0	Introduction	1
1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Objective of the Project	3
1.4	Scope of Project	3
1.5	Limitation of Study	3
1.6	Significance of Study	4
1.7	Organization of Project	4

CHAPTER 2: LITERATURE REVIEW

2.0	Introduction	5
2.1	Definition of Lightning	5
2.2	Lightning Activity In Malaysia	5

	2.2.1	Ground Flash Density In Malaysia	6	
2.3	3 Protection of Structures			
	2.3.1	Protection to Reduce the Failure of Internal Systems	9	
2.4	Lightr	ning Risk Assessment Principles	9	
2.5	.5 Determination Of Collection Area, Ad		10	
	2.5.1	Rectangular Structure	10	
2.6	6 Annual N Number of Dangerous Events		11	
	2.6.1	Number of Dangerous Events Due To Flash		
		To A Structure	12	
	2.6.2	Number of Dangerous Events Due To Flash Near A	10	
		Structure, N _M	12	
	2.6.3	Number of dangerous events due to flash to a service, N_L	13	
	2.6.4	Number of dangerous events due to flash near a service, N_I	16	
	2.6.5	Characteristics of Correction Factor	16	
2.7	Proba	bility of Damage For A Structure, P_x	17	
	2.7.1	Assessment of Probability P _A Flash to A Structure Will		
		Cause Injury To Living Beings	17	
	2.7.2	Assessment of Probability P _B to Reduce Physical		
		Damage Depending on the Protection Measures	18	
	2.7.3	Assessment of Probability P_C that Will Cause the		
		Failure of Internal System Due to Flash to A Structure	19	
	2.7.4	Assessment Probability P _M that Will Cause Failure of		
		Internal Systems Due to Flash Near A Structure	19	
	2.7.5	Probability P _U Value that Will Cause Injury to Living		
		Beings Due to Flash To A Service	22	
	2.7.6	Value of Probability P _v Will Cause the Cause		
		Physical Damage Due to Flash To A Service	23	
2.8	Assessn	nent of Loss L_x In A Structure	23	
	2.8.1 Average Relative Amount of Loss Per Year23			
	2.8.2	Human Life Loss	24	