
MULTI-SIZED OUTPUT CACHE
CONTROLLERS

Mohd Naqib Bin Johari
Faculty of Electrical Engineering

Universiti Teknology MARA
benbon88@gmail.com

Abstract – This thesis describes the design of a Multi-sized

Output Cache Controller that will handle 2Kbyte 16 ways with 4
word block size cache. A cache controller is a device that used to
sequences the read and write of the cache storage array [1]. Most
of modern microprocessor is designed with multiple core
architecture that will lead to massive traffic of cache data
transfer. By taking the advantage of using temporal locality and
spatial locality to the cache, the problem can be solved. With this
solution, a controller that capable to handle huge amount of way
and block size need to be designed. It also should have the
capability overcome the cache coherence. This design will be
implemented using Xilinx software. It was developed base on
Verilog coding. Using the same software, a test bench was
constructed to test the functionality of the controller. This cache
controller consists of four stages, from request to read data. It
had the capability to read and write to different agent on various
output data size from 1byte till 16 byte.

Index Terms – cache controller design, cache design, memory

architecture, set-associative cache.

I. INTRODUCTION
Throughout the last decades, the technology of digital

electronic have become more advance. As the times goes on,
this advancement have made the computer and other
electronic hardware such as mobile phone, PDA and many
electronics gadget become smaller, faster and cheaper to
produce. Most of these devices are using microprocessor as
their brain to control their operation. Nowadays, making a
faster microprocessor is the main concern. One of the
important components inside the microprocessor is the cache
controller. As the microprocessor speed vastly increases,
designing a much faster cache become very important [2][3].
One of the ways to improve the cache controller is by
executing a pipelined cache controller [4]. However, this
solution will increase the complexity of the circuit. Multicore
architecture was introduced to increase the processing speed
and had been widely use over the world due to its high
performance [6]. As the multicore system allow to process
multiple applications simultaneously, the cache controller was
introduced to overcome the problem existed during all the
cores sharing cache memory on a single dye [6]. However, the
cache controller needs to be fast enough to deals with this
massive data transfer between cache, memory and the
processor. Increasing the size of the cache can increase the
cache performance. But there is a trade-off, where the caches
access time increases as the size increasing [7]. Nevertheless,
most of caches earn a lot of benefit from larger cache size [8].

This cache controller is designed to have a capability to read
and write data with three different agents. With the capability
to handle the large size or space of the cache will help
increase the performance as they reduce the miss penalty [7].
It will also able to overcome the cache coherence problem [5].

A. Problem statement

Applying multi-ways and multi block to the cache are the
common method to reduce the miss penalty. However, it will
lead to the complexity of the cache controller design. Besides
that, the multi-core configurations that provide by most of
microprocessor today also contribute to the complexness of
the controller which leads to the increasing of the price and
power consumption. Thus, simpler controller will be needed.
To improve the processing performance, it also needs to
handle the multiple output size.

II. THE CACHE
The cache is fastest memory available on the market due

to its small sizes and architecture. It is the highest part in the
memory hierarchy tree. But it is also the most expensive
among them all.

A. The Architecture

Figure 1 below shows the architecture of the cache
designed for this particular project. The cache implemented
here has a memory of 2 kbyte. It is 16 ways set associative
cache with a block size of 16 byte. This mean that the data
corresponding with 16 different tag with the same line. Each
way has the capability to hold 128-bit on each set. There are 8
set for each of ways.

Fig. 1 The block diagram for the cache architecture.

Counter

 Since the cache needs to provide variable data from 1-bit
till 16-bit, the byte offset for the address is used. The bits 0 to
1 are called byte select address. It is used when the CPU
requesting only 1 byte or 2 byte data. The bits 2 to 4 are block
select address. These bits are used to select the any word
inside the caches. The bits 5 to 7 are called set select address.
These bits are used to select the set in every ways inside the
cache. The rest of the bits are tag addresses for the tag
register. Each set in each way has its individual tag addresses
which used to identify each data inside the cache.

B. Write Operation

To write the cache, first the way will selected by a special
replacement algorithm. Since the main objective of this thesis
is to build a cache controller, the counter will be used as the
replacement method instead of LRU (least recently used)
replacement policy. The counter will feed into a way select
multiplexor which selected by a hit bits before feed into a
decoder. If there is a hit, the multiplexor will select the input
from hit encoder (the same selector as the data multiplexor
used). If it is not, the multiplexor will select the input from the
counter module. The decoder will enable any empty way or
any way with the same input tag register base on decision
made by the way select multiplexor. The set of each ways is
selected based on set select address. For instance, if the set
select address is 001, set number one will be selected.

C. Read Operation

To read the cache, all the ways will be enabled. The set
select address will decide which set will be used. Base on the
tag address provided by the CPU, it will be compared using
comparator inside each way. If there is the same tag register
inside the cache, it will be a hit. But the tag register must be
also valid, if it is not, means there is no data for that register
and no hit. The data multiplexor will select the way which
asserted the hit. These multiplexor select the data via the data
provide by the hit encoder. There should be only one hit at a
time since one each way should be consists different register.
If there is no hit, no data will provided. If there is a hit, the
output will be taken from the data from data multiplexor. But
this is happen when the CPU request the 16 byte data output.
Remember that the controller should provide 1 byte, 2 byte, 4
byte, 8 byte and 16 byte. Whenever the CPU request an 8 byte
data output, the data from data multiplexor will feed into
another multiplexor called 8 byte multiplexor. This
multiplexor will select only 8 byte of the address given. If the
CPU request a 4 byte data output, the data from 8 multiplexor
will feed into another multiplexor called 4 byte multiplexor. If
the CPU request a 2 byte data output, the data from 4
multiplexor will feed into another multiplexor called 2 byte
multiplexor. If the CPU request a 1 byte data output, the data
from 2 multiplexor will feed into another multiplexor called 1
byte multiplexor. The final data will provide trough the output.

III. THE MAIN MEMORY
The main memory is slower compare to the cache due to

its huge sizes and architecture. It is the lowest part in the
memory hierarchy tree.

A. The Architecture

The total main memory has 4096 bytes of data. The data is
arranged one byte after another according to their address.
Each address corresponds to a single byte of data. Unlike the
cache, there are no states associated with the data. Data is
accessed by the cache through a 32 bit address line.

The main memory use the different size of data compare to
cache. In this project queues are designed to make up for this
size mismatch. It will convert 8 byte input to two 4 byte
before feed it to the main memory by queues it together. This
will be explained later in the cache controller chapter.

B. Operation

The memory has simpler architecture compare to the cache
since the data inside only consist of 4 byte on each sets, the
address is word aligned. Whenever the controller wanted to
write data inside the memory, the write enable will be
asserted. And the data will be stored with correspond to the
address given. For instance, if the address is 0x00000000, the
data will be stored in the first sets of the memories. If the
address is 0x00000004, the data will be stored in the second
sets of the memories and so on.

To read the data, there is no need to enable anything to the
memories. Just feed the address input with an address, the
output will provide the data which correspond to the address.

IV. THE CACHE CONTROLLER

Cache Controller is a device that control the data transfer
between cache, main memory and microprocessor. When the
microprocessor sends an address to request data, the cache
controller will check the data inside cache. If the data are
available, the cache controller will send the data to processor.
If the data are not present in the cache, the cache controller
will fetch the data from the main memories and send to the
microprocessor as well as the cache [9].

A. The Architecture

This cache will have four stages which is fetch data, read
cache and main memory, write main memory and cache and
provide data to the processor. All of these stages are designed
using FSM (Finite-state machine). These stages were divided
into few states. Figure 2 bellow shows the main state diagram
for the cache.

As mentioned before, this controller needs to write 8 byte
fill data path as well as read data size of provide 1 byte, 2
byte, 4 byte, 8 byte and 16 byte. This is where the main
challenge come from which is to aligned variable data
exchange between the memory, cache and CPU. This will be
explained more detail in the operation section.

Fig. 2 The state diagram for the cache controller.

This controller also needs to deal with 3 different agents

which is the processor. Since only one level of cache will be
used, all the processor will share the same cache. To
overcome the data transfer clash, the controller will provide
the busy flag. This flag will asserted whenever the cache or
memory were being accessed. Thus, the processor only can
request the data if the busy flag is not asserted. This might
make it slower but it will save more space and cost compare to
the multi-level cache.

B. Operation

The controller consists of a few states; Fetch Data, Read
Memory, Write Memory, Write Cache, Read Cache and Give
Data. All this state just the main state where there are a few
more states with in these states.

1) Fetch Data: At this state, all the controlling output and

temporary register whether will be initialize, reset or emptied
by the controller. As a data fetcher, it will check whether it is
read or write operation. Within this stage, the controller will
keep the busy flag down until it goes to other stage.

2) Read Cache & Give data: At this state, the cache will

be checked. If there is a hit, the data found in the cache will be
sent to the CPU. If there is no hit of miss, it will go to the next
state which is Read Memory state.

3) Read Memory: In this state, there are another three

states. These states are used to convert four 4 byte data
memory to a single 16 byte data as mentioned in the memory
chapter. In each of these states, it will do a word align address
increment for requesting data from the memory. All four of
the 4 byte data collected will be stored in a single 16 byte
temporary register and pass it to the Write Cache states. This
acts like a parallel to single data converter where is multiple
smaller size data are combined together to form one big data
size.

4) Write Cache: At this states, it will use the previously

stored data in the temporary register and write it to the cache.
If the state is access due to the cache miss, it will return back
to the Read Cache & Give data state. Else, it will go back to
Fetch Data state waiting for the next instruction.

5) Write Memory: Writing the memory will require

another extra stage as the input data size is 8 byte. As the
Read Memory stage, it needs to convert the data size first but
into smaller size. First, half of the data (lower part) will be
stored in the memory. Then, there will be an increment to the
address with one word to store another half of the data (upper
part) into the memory. This It will convert 8 byte input to two
4 byte where is the single line data broke into smaller multiple
outputs to feed the smaller input size memory. The next state
will be back to Write Cache state.

V. RESULT AND ANALYSIS

 In this chapter, it will be divided into four sections. The
first section will describe about the synthesizing and
implementing the design. The second and the third section are
to test the functionality of the design foundation which is the
main memory and the cache. The last section will be the
controller itself. The entire cache controller design (including
the whole cache and the memory) were simulated using ISim
software provided by the Xilinx software.

A. Synthesizing And Implementing The Design

Before simulate the cache controller, the design was
synthesized first. This process was executed using the tools
provided by the Xilinx software. Table I below shows the
synthesis report of the Device Utilization Summary based
from this design.

TABLE I. SYNTHESIS REPORT

Device Utilization Summary
Logic Utilization Used Available Utilization

Number of Slices 3667 4656 78%

Number of Slice Flip Flops 2444 9312 26%

Number of 4 input LUTs 7202 9312 77%

Number of bonded IOBs 233 232 100%

Number of GCLKs 9 24 37%

 Base on the result given, the design cannot meet the spec

that been demanded. The development board reference that
been used for this simulation was Xilinx Spartan 3E
XC3S500E – FG320. This due to the number of the number of
Bond Input Output Blocks (IOBs) used just a little bit
exceeded the maximum capacity of the device package. The
design was using a lot of input and output which cannot be
supported by the package. This was cause by the spec required
for the design. Not including the other input and output, the
data output alone required 128 ports while the package only
support for 232 ports only. However, the other logic
utilization were still can be supported by the selected
development board. As been observed, the number of slice
only utilizes 78% of the board. Each slice contains a number
of Lookup Tables (LUT's), flip-flops, and a carry logic
element which make up the logic of the design before
mapping. After mapping, all of the LUT's and flip-flops are

packed into slices. The other logic utilization also below the
maximum limit of the board where number of Slice Flip Flop,
4 Input LUTS and Global Clocks (GLKs) only utilize 26%,
77%, and 37% respectively. From this result, by simply
remove one of the outputs or inputs might allow it to
implement the design to the FPGA. Unfortunately, during
implementing the design, the result shows the different story.
The Table II below shows some of the Device Utilization
Summary results after the design were implemented.

TABLE II. IMPLEMENTING DESIGN REPORT

Device Utilization Summary
Logic Utilization Used Available Utilization

Number of SLICEMs 2672 2328 114%

Number of occupied Slices 4654 4656 99%

- containing only related logic 4654 4654 100%

- containing unrelated logic 0 4654 0%

 These results were the additional result provided after
implementing the design. The other results remain the same as
previous result in Table I. From the observation, it tends to
give more error when the design was implemented. This due
to the number of the number of SLICEM used was exceeded
the maximum capacity of the device package by 114%. Thus,
the design was cannot be implemented as an error was occur.
SLICEM (M = memory) can be configured to implement
distributed memory or shift registers instead. Since this design
consist of 4k byte of main memory and 2k byte of cache
memory. It will take a lot of SLICEM to implement. All of
this problem can be overcome by using the latest and more
advance package such as Spartan6, Virtex6 and Virtex7 which
provide more slices with their package.

 The only reason that the design need to be implemented is
that one of the given requirement demand the controller to be
test its functionality using the logic analyzer. This can be done
by implement it on the FPGA and check output on the FPGA
using the logic analyzer. This will test the design can be work
correctly in real life. Because of this limitation, it cannot be
implemented on the FPGA.

 There were many other problems that had been faced to
achieve the requirement given. For most of it, it can be solved.
One of it was, instead of using multiplexor, it was replaced
with a decoder to select the way that should be used to write
the data to the cache. This helps to reduce some logic
utilization of the design. But there is one problem that was not
able to be solved. There is a function that will enable the user
to clear all the data from the memory. This is different from
reset function as the memory should still be available as the
reset function executed. Figure 3 shows the coding that had
been designed to execute the clear function. If this function
was implemented to the design, the number of slice will be
utilizing the development board for more than 350%.

By assuming this weird behavioral was caused by the
counter that been used to clear the data set by set, another
coding that not using the For Loop Statement was been
designed. It was replaced by specifying every set to be clear
without any loop. But the result was remaining the same.
Because of this matter, the clear function was not included to
the design.

Fig. 3 Coding for clear function.

B. Testing The Main Memory
The testing will cover the basic function of the main

memory which on how it would read and writes data to the
memory. The data from Table III below shows the input data
for the simulation and where it should be occupied. Noted that
this memory was word aligned, making the next address will
be 0x04 instead of 0x01.

TABLE III. MEMORY INPUT DATA

Address Input Data Array Occupied

00000000 20202020 RAM[0,31:0]

00000004 22222222 RAM[1,31:0]

Figure 4 shows the waveform of the memory simulation.

As seen from the Figure 4, when the write enable (we) is at
high state, it will allow the memory to be written with the data
provide from the input source which is write data (wd). It will
locate the data precisely according to the provided input
address (a). When a is 00000000 and wd is 20202020, the
first array of the memory will fill with 20202020. This
memory does not have any read enable function which mean
that the data can be access any time which leads to faster
operation. So, if we is low and a is 00000000, the output
which is read data (wd) will provide the stored data at address
00000000 which was 20202020.

Fig. 4 Waveform of the memory read and writes simulation.

C. Testing The Cache
The testing will cover the basic function of a cache which

write policy of a 16 way set associative cache and a basic
cache read hit or miss test. Since the design consist lot of
cache coding, this stage is very crucial as this where to
determine the design was functioning correctly. A lot of
development and troubleshooting were done at this stage.
During the early stage of designing the cache, there is a
problem on how to decide which way need to be selected to
write and how to replace the old data when the address was
updated with new data. Using a LRU is not an option as it
would take a lot more time to design it. Besides, the main
objective was designing a cache controller where the cache
just the foundation of the design. A simple counter was used
instead of using LRU. What it did is it will change to the next
way after one way was filling with data. However, from the
data analysis, even it had the same tag and set, it tend to write
at the next way instead replacing the old data. This is where
the decision has been made to add an additional multiplexor to
choose the input for the decoder to select the way as been
mentioned before in the cache chapter.

1) Write Test: The write test will follow data provided in

the Table IV. As been explained before in cache architecture
section, the tag and set were determined by the data address.

TABLE IV. CACHE INPUT DATA

Address Input Data Tag Set Occupied

00000000 22222222
20202020 00000000 0

00000008 f3f3f3f3
f2f2f2f2 00000000 0

00000080 aaaaaaaa
aaaaaaaa 00000001 0

Using the provided data, the cache was been simulated to

write the data into the correct destination in the cache. Figure
5 shows the waveform obtained from way0.

Fig. 5 Waveform of the cache writes simulation for way0.

As can be seen from the Figure 5, the data for address
0x00 and 0x08 were occupying the correct location. As the
first data, it will select the first way which is way0. Remember
that this 16 byte aligned, so both of this address data will
share the same set and way as they have the same set number
(000) and tag register (25’b00). Other than that, the valid flag
for the first set was also asserted. The other locations were
remaining empty. For the last data (0x80) it also located at the
correct way which is the next way (way1) and set 000.

To test whether the re-write policy working properly, the
last data address in Table IV which is 0x80 had been replaced
with the same address as previous data which is 0x08. What
should happen is it will replace the old data with the new one
at the exact location in the cache instead of going to the next
way as show in the Figure 6 below. This clarifies that this
cache can replace the old data properly. The old data which is
f3f3f3f3_f2f2f2f2_22222222_20202020 was successfully
replaced with the new data which is aaaaaaaa_aaaaaaaa
22222222_20202020. The lower part was remaining the same
because only address 0x08 data was change while the address
0x00 still using the old data.

Fig. 6 Waveform of the cache re-writes simulation in way0.

 2) Read Test: On this test, the cache will be checked

whether it manage to fetch the same data that been stored
during the previous test or not. For this test it will continue
from the previous test. The functionality of this design output
size selector was also going to be tested. To select the size, the
size select (szsel) will be asserted according to Table V.

TABLE V. CACHE SIZE SELECT

Data Size szsel
1 byte 001

2 byte 010

4 byte 011

8 byte 100

16 byte 101

 Since the maximum size of the output is 16byte, all the
output will be in 16 byte size format. What the data size do
just choose the desired data with respect of the selected size.
For example, if the stored data is aaaaaaaa_aaaaaaaa
22222222_20202020 and the selected data is the second word
with the size of 4 byte, the output will be 00000000
00000000_00000000_ 22222222 instead of 22222222. The
result from Figure 7 confirms that the cache can be read
properly. It did provide the correct output as it supposed to.
From the output waveform (see the second output from Figure
7), been observed that if the third word from cache set with a
size of 16 byte was chosen, it will give the whole sets data
including the first and the second word. Note that the cache
was 16 byte aligned, thus the if the CPU choose for 16 byte
output, it will only look at the address bit 4 and onward and
the bit 0 till bit 3 will be neglected.

Fig. 7 Waveform of the cache read simulation.

D. Testing The Cache Controller

During the early stage of designing the controller, lots on
test had been ran to do a lot of correction. The main problems
come from the glitch which caused by the clock mismatch.
Most of the data did not arrive at the same data as the other.
This is hard to troubleshoot as there is so many ports and
register need to check. Although not all the data arrive at the
same time, it manages to get the correct output. Basically this
test is almost the same with the cache test but with lesser input
to deal with. During the cache test, the address were converted
manually during the testbench which mean that all the tag
register, set, word select and byte select manually asserted
rather than asserted a single address. Differ from previous test,
only the address need to be included and the controller will
automatically convert it to those register. It also will handle
the cache and the main memory at the same time. On this test,
both read and write test for both cache and main memory will
be executed at the same time. It will use the same data and
address as the previous test. The Figure 8 shows the output of
the executed simulation.

Fig. 8 Waveform of the cache controller simulation.

This result is just only a part of the total output as there is
too many data of result to include in the figure. However, as
observed from the Figure 8, it managed to call the same data
with the same address as been used on the previous test. All
the result was exactly the same. The FSM of the controller
also work as it should. Inside of the cache and the main
memory also had been checked and it did provide the same
waveform as had been tested before on both cache and the
main memory. Other than that, the busy flag also work
without any hassle.

VI. CONCLUSION
Base from all the simulation that had been done, it can be

conclude that the design was successfully functioning.
Furthermore, the utilization problem might be solved and the
design can be implemented in to real life if there is higher
spec development board package around to work with.

ACKNOWLEDGMENT
First and foremost, my special thanks to Puan Siti Lailatul

Binti Mohd Hassan who serving concurrently as my VLSI
lecturer and supervisor for her remarkable guidance, support
and advice to carry out my final year project. Many thanks to
my Digital Design lecture Dr. Azilah Binti Saparon for
providing me input, suggestion and knowledge throughout the
study. Also, special thanks go to my beloved mother and my
family for their encouragement and support during doing this
project.

REFERENCES
[1] David E. Culler, Jaswinder Pal Singh, Anoop Gupta, Parallel

Computer Architecture: A Hardware/Software Approach, Gulf
Professional Publishing, 1999, pp. 381.

[2] Roy W. Badeau, “A 100-MHz Macropipelined VAX
Microprocessor”, in IEEE Journal of Solid-State Circuits, Vol.
27, No. 11, November, 1992.

[3] Daniel W. Dobberpuhl, “A 200-MHz 64-bit Dual Issue CMOS
Microprocessor”, in IEEE Journal of Solid-State Circuits, Vol.
27, No. 11, November, 1992.

[4] Apoorv Srivastava, “1900-MHz CMOS 4-Kbyte Pipelined
cache”, in IEEE Journal of Solid-State Circuits, 1995, pp.1053.

[5] Vipin S. Bhure, Praveen R. Chakole, “Design of Cache
controller for Multi-core Processor System”, in International
Journal of Electronics and Computer Science Engineering,
pp.520.

[6] Alokika Dash, Peter Petrov, “Energy-Efficient Cache
Coherence for Embedded Multi-Processor Systems through
Application-Driven Snoop Filtering”, IEEE Journal of Solid-
State Circuits, 2006.

[7] Kunle Olukotun, “Multilevel Optimization of Pipelined
Caches”, IEEE Journal of Solid-State Circuits, October 1997.

[8] David Money Harris, Sarah L. Harris, Digital Design and
Computer Architecture, Morgan Kaufmann, March 2007, pp.
476.

[9] Badri Ram, Advanced Microprocessors and Interfacing, Tata
McGraw-Hill Education, Sept 2001, pp.289.

