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Abstract – This thesis describes the design of a Multi-sized 

Output Cache Controller that will handle 2Kbyte 16 ways with 4 
word block size cache. A cache controller is a device that used to 
sequences the read and write of the cache storage array [1]. Most 
of modern microprocessor is designed with multiple core 
architecture that will lead to massive traffic of cache data 
transfer. By taking the advantage of using temporal locality and 
spatial locality to the cache, the problem can be solved. With this 
solution, a controller that capable to handle huge amount of way 
and block size need to be designed. It also should have the 
capability overcome the cache coherence. This design will be 
implemented using Xilinx software. It was developed base on 
Verilog coding. Using the same software, a test bench was 
constructed to test the functionality of the controller. This cache 
controller consists of four stages, from request to read data. It 
had the capability to read and write to different agent on various 
output data size from 1byte till 16 byte.  

 
Index Terms – cache controller design, cache design, memory 

architecture, set-associative cache. 
 

I. INTRODUCTION 
Throughout the last decades, the technology of digital 

electronic have become more advance. As the times goes on, 
this advancement have made the computer and other 
electronic hardware such as mobile phone, PDA and many 
electronics gadget become smaller, faster and cheaper to 
produce. Most of these devices are using microprocessor as 
their brain to control their operation. Nowadays, making a 
faster microprocessor is the main concern. One of the 
important components inside the microprocessor is the cache 
controller. As the microprocessor speed vastly increases, 
designing a much faster cache become very important [2][3].  
One of the ways to improve the cache controller is by 
executing a pipelined cache controller [4]. However, this 
solution will increase the complexity of the circuit. Multicore 
architecture was introduced to increase the processing speed 
and had been widely use over the world due to its high 
performance [6]. As the multicore system allow to process 
multiple applications simultaneously, the cache controller was 
introduced to overcome the problem existed during all the 
cores sharing cache memory on a single dye [6]. However, the 
cache controller needs to be fast enough to deals with this 
massive data transfer between cache, memory and the 
processor.  Increasing the size of the cache can increase the 
cache performance. But there is a trade-off, where the caches 
access time increases as the size increasing [7]. Nevertheless, 
most of caches earn a lot of benefit from larger cache size [8].  

This cache controller is designed to have a capability to read 
and write data with three different agents. With the capability 
to handle the large size or space of the cache will help 
increase the performance as they reduce the miss penalty [7]. 
It will also able to overcome the cache coherence problem [5]. 
 
A. Problem statement 

Applying multi-ways and multi block to the cache are the 
common method to reduce the miss penalty. However, it will 
lead to the complexity of the cache controller design. Besides 
that, the multi-core configurations that provide by most of 
microprocessor today also contribute to the complexness of 
the controller which leads to the increasing of the price and 
power consumption. Thus, simpler controller will be needed. 
To improve the processing performance, it also needs to 
handle the multiple output size.  
 

II. THE CACHE  
The cache is fastest memory available on the market due 

to its small sizes and architecture. It is the highest part in the 
memory hierarchy tree. But it is also the most expensive 
among them all.  

 
A. The Architecture 

Figure 1 below shows the architecture of the cache 
designed for this particular project. The cache implemented 
here has a memory of 2 kbyte. It is 16 ways set associative 
cache with a block size of 16 byte. This mean that the data 
corresponding with 16 different tag with the same line. Each 
way has the capability to hold 128-bit on each set. There are 8 
set for each of ways. 

 

 
Fig. 1 The block diagram for the cache architecture. 
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       Since the cache needs to provide variable data from 1-bit 
till 16-bit, the byte offset for the address is used. The bits 0 to 
1 are called byte select address. It is used when the CPU 
requesting only 1 byte or 2 byte data. The bits 2 to 4 are block 
select address. These bits are used to select the any word 
inside the caches. The bits 5 to 7 are called set select address. 
These bits are used to select the set in every ways inside the 
cache. The rest of the bits are tag addresses for the tag 
register. Each set in each way has its individual tag addresses 
which used to identify each data inside the cache.  
 
B. Write Operation 

To write the cache, first the way will selected by a special 
replacement algorithm. Since the main objective of this thesis 
is to build a cache controller, the counter will be used as the 
replacement method instead of LRU (least recently used) 
replacement policy. The counter will feed into a way select 
multiplexor which selected by a hit bits before feed into a 
decoder. If there is a hit, the multiplexor will select the input 
from hit encoder (the same selector as the data multiplexor 
used). If it is not, the multiplexor will select the input from the 
counter module. The decoder will enable any empty way or 
any way with the same input tag register base on decision 
made by the way select multiplexor.  The set of each ways is 
selected based on set select address. For instance, if the set 
select address is 001, set number one will be selected. 

 
C. Read Operation 

To read the cache, all the ways will be enabled. The set 
select address will decide which set will be used. Base on the 
tag address provided by the CPU, it will be compared using 
comparator inside each way. If there is the same tag register 
inside the cache, it will be a hit. But the tag register must be 
also valid, if it is not, means there is no data for that register 
and no hit. The data multiplexor will select the way which 
asserted the hit. These multiplexor select the data via the data 
provide by the hit encoder. There should be only one hit at a 
time since one each way should be consists different register. 
If there is no hit, no data will provided. If there is a hit, the 
output will be taken from the data from data multiplexor. But 
this is happen when the CPU request the 16 byte data output. 
Remember that the controller should provide 1 byte, 2 byte, 4 
byte, 8 byte and 16 byte. Whenever the CPU request an 8 byte 
data output, the data from data multiplexor will feed into 
another multiplexor called 8 byte multiplexor. This 
multiplexor will select only 8 byte of the address given. If the 
CPU request a 4 byte data output, the data from 8 multiplexor 
will feed into another multiplexor called 4 byte multiplexor. If 
the CPU request a 2 byte data output, the data from 4 
multiplexor will feed into another multiplexor called 2 byte 
multiplexor. If the CPU request a 1 byte data output, the data 
from 2 multiplexor will feed into another multiplexor called 1 
byte multiplexor. The final data will provide trough the output. 

 
 
 
 

III. THE MAIN MEMORY 
The main memory is slower compare to the cache due to 

its huge sizes and architecture. It is the lowest part in the 
memory hierarchy tree. 

  
A. The Architecture 

The total main memory has 4096 bytes of data. The data is 
arranged one byte after another according to their address. 
Each address corresponds to a single byte of data. Unlike the 
cache, there are no states associated with the data. Data is 
accessed by the cache through a 32 bit address line.  

The main memory use the different size of data compare to 
cache. In this project queues are designed to make up for this 
size mismatch. It will convert 8 byte input to two 4 byte 
before feed it to the main memory by queues it together. This 
will be explained later in the cache controller chapter. 

 
B. Operation 

The memory has simpler architecture compare to the cache 
since the data inside only consist of 4 byte on each sets, the 
address is word aligned. Whenever the controller wanted to 
write data inside the memory, the write enable will be 
asserted. And the data will be stored with correspond to the 
address given. For instance, if the address is 0x00000000, the 
data will be stored in the first sets of the memories. If the 
address is 0x00000004, the data will be stored in the second 
sets of the memories and so on. 

To read the data, there is no need to enable anything to the 
memories. Just feed the address input with an address, the 
output will provide the data which correspond to the address. 

 
IV. THE CACHE CONTROLLER 

Cache Controller is a device that control the data transfer 
between cache, main memory and microprocessor. When the 
microprocessor sends an address to request data, the cache 
controller will check the data inside cache. If the data are 
available, the cache controller will send the data to processor. 
If the data are not present in the cache, the cache controller 
will fetch the data from the main memories and send to the 
microprocessor as well as the cache [9]. 

 
A. The Architecture 

This cache will have four stages which is fetch data, read 
cache and main memory, write main memory and cache and 
provide data to the processor. All of these stages are designed 
using FSM (Finite-state machine). These stages were divided 
into few states. Figure 2 bellow shows the main state diagram 
for the cache.  

As mentioned before, this controller needs to write 8 byte 
fill data path as well as read data size of provide 1 byte, 2 
byte, 4 byte, 8 byte and 16 byte. This is where the main 
challenge come from which is to aligned variable data 
exchange between the memory, cache and CPU. This will be 
explained more detail in the operation section. 



 

 
Fig. 2 The state diagram for the cache controller. 

 
This controller also needs to deal with 3 different agents 

which is the processor. Since only one level of cache will be 
used, all the processor will share the same cache. To 
overcome the data transfer clash, the controller will provide 
the busy flag. This flag will asserted whenever the cache or 
memory were being accessed. Thus, the processor only can 
request the data if the busy flag is not asserted. This might 
make it slower but it will save more space and cost compare to 
the multi-level cache. 
 
B. Operation 

The controller consists of a few states; Fetch Data, Read 
Memory, Write Memory, Write Cache, Read Cache and Give 
Data. All this state just the main state where there are a few 
more states with in these states. 

 
1) Fetch Data: At this state, all the controlling output and 

temporary register whether will be initialize, reset or emptied 
by the controller. As a data fetcher, it will check whether it is 
read or write operation. Within this stage, the controller will 
keep the busy flag down until it goes to other stage. 

 
2) Read Cache & Give data: At this state, the cache will 

be checked. If there is a hit, the data found in the cache will be 
sent to the CPU. If there is no hit of miss, it will go to the next 
state which is Read Memory state. 

 
3) Read Memory: In this state, there are another three 

states. These states are used to convert four 4 byte data 
memory to a single 16 byte data as mentioned in the memory 
chapter. In each of these states, it will do a word align address 
increment for requesting data from the memory. All four of 
the 4 byte data collected will be stored in a single 16 byte 
temporary register and pass it to the Write Cache states. This 
acts like a parallel to single data converter where is multiple 
smaller size data are combined together to form one big data 
size.  

 
4) Write Cache: At this states, it will use the previously 

stored data in the temporary register and write it to the cache. 
If the state is access due to the cache miss, it will return back 
to the Read Cache & Give data state. Else, it will go back to 
Fetch Data state waiting for the next instruction. 

 
5) Write Memory: Writing the memory will require 

another extra stage as the input data size is 8 byte. As the 
Read Memory stage, it needs to convert the data size first but 
into smaller size. First, half of the data (lower part) will be 
stored in the memory. Then, there will be an increment to the 
address with one word to store another half of the data (upper 
part) into the memory. This It will convert 8 byte input to two 
4 byte where is the single line data broke into smaller multiple 
outputs to feed the smaller input size memory. The next state 
will be back to Write Cache state. 

 
V. RESULT AND ANALYSIS 

        In this chapter, it will be divided into four sections. The 
first section will describe about the synthesizing and 
implementing the design. The second and the third section are 
to test the functionality of the design foundation which is the 
main memory and the cache. The last section will be the 
controller itself. The entire cache controller design (including 
the whole cache and the memory) were simulated using ISim 
software provided by the Xilinx software. 
 
A. Synthesizing And Implementing The Design 

Before simulate the cache controller, the design was 
synthesized first. This process was executed using the tools 
provided by the Xilinx software. Table I below shows the 
synthesis report of the Device Utilization Summary based 
from this design. 

TABLE I.  SYNTHESIS REPORT 

Device Utilization Summary 
Logic Utilization Used Available Utilization 

Number of Slices 3667 4656 78% 

Number of Slice Flip Flops 2444 9312 26% 

Number of 4 input LUTs 7202 9312 77% 

Number of bonded IOBs 233 232 100% 

Number of GCLKs 9 24 37% 

 
    Base on the result given, the design cannot meet the spec 

that been demanded. The development board reference that 
been used for this simulation was Xilinx Spartan 3E 
XC3S500E – FG320. This due to the number of the number of 
Bond Input Output Blocks (IOBs) used just a little bit 
exceeded the maximum capacity of the device package. The 
design was using a lot of input and output which cannot be 
supported by the package. This was cause by the spec required 
for the design. Not including the other input and output, the 
data output alone required 128 ports while the package only 
support for 232 ports only. However, the other logic 
utilization were still can be supported by the selected 
development board. As been observed, the number of slice 
only utilizes 78% of the board. Each slice contains a number 
of Lookup Tables (LUT's), flip-flops, and a carry logic 
element which make up the logic of the design before 
mapping.  After mapping, all of the LUT's and flip-flops are 



 

packed into slices. The other logic utilization also below the 
maximum limit of the board where number of Slice Flip Flop, 
4 Input LUTS and Global Clocks (GLKs) only utilize 26%, 
77%, and 37% respectively. From this result, by simply 
remove one of the outputs or inputs might allow it to 
implement the design to the FPGA. Unfortunately, during 
implementing the design, the result shows the different story. 
The Table II below shows some of the Device Utilization 
Summary results after the design were implemented. 

TABLE II.  IMPLEMENTING DESIGN REPORT 

Device Utilization Summary 
Logic Utilization Used Available Utilization 

Number of SLICEMs 2672 2328 114% 

Number of occupied Slices 4654 4656 99% 

-  containing only related logic 4654 4654 100% 

- containing unrelated logic 0 4654 0% 

 
      These results were the additional result provided after 
implementing the design. The other results remain the same as 
previous result in Table I. From the observation, it tends to 
give more error when the design was implemented. This due 
to the number of the number of SLICEM used was exceeded 
the maximum capacity of the device package by 114%. Thus, 
the design was cannot be implemented as an error was occur. 
SLICEM (M = memory) can be configured to implement 
distributed memory or shift registers instead. Since this design 
consist of 4k byte of main memory and 2k byte of cache 
memory. It will take a lot of SLICEM to implement. All of 
this problem can be overcome by using the latest and more 
advance package such as Spartan6, Virtex6 and Virtex7 which 
provide more slices with their package.  
     
     The only reason that the design need to be implemented is 
that one of the given requirement demand the controller to be 
test its functionality using the logic analyzer. This can be done 
by implement it on the FPGA and check output on the FPGA 
using the logic analyzer. This will test the design can be work 
correctly in real life. Because of this limitation, it cannot be 
implemented on the FPGA. 
 
     There were many other problems that had been faced to 
achieve the requirement given. For most of it, it can be solved. 
One of it was, instead of using multiplexor, it was replaced 
with a decoder to select the way that should be used to write 
the data to the cache. This helps to reduce some logic 
utilization of the design. But there is one problem that was not 
able to be solved. There is a function that will enable the user 
to clear all the data from the memory. This is different from 
reset function as the memory should still be available as the 
reset function executed. Figure 3 shows the coding that had 
been designed to execute the clear function. If this function 
was implemented to the design, the number of slice will be 
utilizing the development board for more than 350%.  

By assuming this weird behavioral was caused by the 
counter that been used to clear the data set by set, another 
coding that not using the For Loop Statement was been 
designed. It was replaced by specifying every set to be clear 
without any loop. But the result was remaining the same. 
Because of this matter, the clear function was not included to 
the design. 
 

 
Fig. 3 Coding for clear function. 

 
 

B. Testing The Main Memory 
The testing will cover the basic function of the main 

memory which on how it would read and writes data to the 
memory. The data from Table III below shows the input data 
for the simulation and where it should be occupied. Noted that 
this memory was word aligned, making the next address will 
be 0x04 instead of 0x01. 

TABLE III.  MEMORY INPUT DATA 

Address Input Data Array Occupied 

00000000 20202020 RAM[0,31:0] 

00000004 22222222 RAM[1,31:0] 

 
Figure 4 shows the waveform of the memory simulation. 

As seen from the Figure 4, when the write enable (we) is at 
high state, it will allow the memory to be written with the data 
provide from the input source which is write data (wd). It will 
locate the data precisely according to the provided input 
address (a). When a is 00000000 and wd is 20202020, the 
first array of the memory will fill with 20202020. This 
memory does not have any read enable function which mean 
that the data can be access any time which leads to faster 
operation. So, if we is low and a is 00000000, the output 
which is read data (wd) will provide the stored data at address 
00000000 which was 20202020.   

 

 
Fig. 4 Waveform of the memory read and writes simulation. 

  



 

C. Testing The Cache 
The testing will cover the basic function of a cache which 

write policy of a 16 way set associative cache and a basic 
cache read hit or miss test. Since the design consist lot of 
cache coding, this stage is very crucial as this where to 
determine the design was functioning correctly. A lot of 
development and troubleshooting were done at this stage. 
During the early stage of designing the cache, there is a 
problem on how to decide which way need to be selected to 
write and how to replace the old data when the address was 
updated with new data. Using a LRU is not an option as it 
would take a lot more time to design it. Besides, the main 
objective was designing a cache controller where the cache 
just the foundation of the design. A simple counter was used 
instead of using LRU. What it did is it will change to the next 
way after one way was filling with data. However, from the 
data analysis, even it had the same tag and set, it tend to write 
at the next way instead replacing the old data. This is where 
the decision has been made to add an additional multiplexor to 
choose the input for the decoder to select the way as been 
mentioned before in the cache chapter. 

 
1) Write Test: The write test will follow data provided in 

the Table IV. As been explained before in cache architecture 
section, the tag and set were determined by the data address.  

TABLE IV.  CACHE INPUT DATA 

Address Input Data Tag Set Occupied 

00000000 22222222 
20202020 00000000 0 

00000008 f3f3f3f3 
f2f2f2f2 00000000 0 

00000080 aaaaaaaa 
aaaaaaaa 00000001 0 

 
Using the provided data, the cache was been simulated to 

write the data into the correct destination in the cache. Figure 
5 shows the waveform obtained from way0. 

 

 
Fig. 5 Waveform of the cache writes simulation for way0. 

As can be seen from the Figure 5, the data for address 
0x00 and 0x08 were occupying the correct location. As the 
first data, it will select the first way which is way0. Remember 
that this 16 byte aligned, so both of this address data will 
share the same set and way as they have the same set number 
(000) and tag register (25’b00). Other than that, the valid flag 
for the first set was also asserted. The other locations were 
remaining empty. For the last data (0x80) it also located at the 
correct way which is the next way (way1) and set 000. 

To test whether the re-write policy working properly, the 
last data address in Table IV which is 0x80 had been replaced 
with the same address as previous data which is 0x08. What 
should happen is it will replace the old data with the new one 
at the exact location in the cache instead of going to the next 
way as show in the Figure 6 below. This clarifies that this 
cache can replace the old data properly. The old data which is 
f3f3f3f3_f2f2f2f2_22222222_20202020 was successfully 
replaced with the new data which is aaaaaaaa_aaaaaaaa 
22222222_20202020. The lower part was remaining the same 
because only address 0x08 data was change while the address 
0x00 still using the old data. 

 

 
Fig. 6 Waveform of the cache re-writes simulation in way0. 

 
   2) Read Test: On this test, the cache will be checked 

whether it manage to fetch the same data that been stored 
during the previous test or not. For this test it will continue 
from the previous test. The functionality of this design output 
size selector was also going to be tested. To select the size, the 
size select (szsel) will be asserted according to Table V. 

TABLE V.  CACHE SIZE SELECT 

Data Size szsel 
1 byte 001 

2  byte 010 

4 byte 011 

8 byte 100 

16 byte 101 



 

       Since the maximum size of the output is 16byte, all the 
output will be in 16 byte size format. What the data size do 
just choose the desired data with respect of the selected size. 
For example, if the stored data is aaaaaaaa_aaaaaaaa 
22222222_20202020 and the selected data is the second word 
with the size of 4 byte, the output will be 00000000 
00000000_00000000_ 22222222 instead of 22222222. The 
result from Figure 7 confirms that the cache can be read 
properly. It did provide the correct output as it supposed to. 
From the output waveform (see the second output from Figure 
7), been observed that if the third word from cache set with a 
size of 16 byte was chosen, it will give the whole sets data 
including the first and the second word. Note that the cache 
was 16 byte aligned, thus the if the CPU choose for 16 byte 
output, it will only look at the address bit 4 and onward and 
the bit 0 till bit 3 will be neglected.     
 

 
Fig. 7 Waveform of the cache read simulation. 

 
D. Testing The Cache Controller 

During the early stage of designing the controller, lots on 
test had been ran to do a lot of correction. The main problems 
come from the glitch which caused by the clock mismatch. 
Most of the data did not arrive at the same data as the other. 
This is hard to troubleshoot as there is so many ports and 
register need to check. Although not all the data arrive at the 
same time, it manages to get the correct output. Basically this 
test is almost the same with the cache test but with lesser input 
to deal with. During the cache test, the address were converted 
manually during the testbench which mean that all the tag 
register, set, word select and byte select manually asserted 
rather than asserted a single address. Differ from previous test, 
only the address need to be included and the controller will 
automatically convert it to those register. It also will handle 
the cache and the main memory at the same time. On this test, 
both read and write test for both cache and main memory will 
be executed at the same time. It will use the same data and 
address as the previous test. The Figure 8 shows the output of 
the executed simulation. 

 

 
Fig. 8 Waveform of the cache controller simulation. 

 

This result is just only a part of the total output as there is 
too many data of result to include in the figure. However, as 
observed from the Figure 8, it managed to call the same data 
with the same address as been used on the previous test. All 
the result was exactly the same. The FSM of the controller 
also work as it should. Inside of the cache and the main 
memory also had been checked and it did provide the same 
waveform as had been tested before on both cache and the 
main memory. Other than that, the busy flag also work 
without any hassle.  
 

VI. CONCLUSION 
Base from all the simulation that had been done, it can be 

conclude that the design was successfully functioning. 
Furthermore, the utilization problem might be solved and the 
design can be implemented in to real life if there is higher 
spec development board package around to work with. 
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