SYNTHETIC UNIT HYDROGRAPH FOR SELANGOR BASINS AND THE ENHANCEMENT OF DEFLOOD SOFTWARE

ASSOC. PROF. WARDAH TAHIR DATO' PROF. IR. DR. SAHOL HAMID ABU BAKAR ZAIDAH IBRAHIM

SEPTEMBER 2003

Table of Contents

Figures and Tables					
Abstract	••••••		īv		
Chapter 1	Intro 1.1 1.2 1.3	duction Objectives of the Research Significance of Research Scope of Study.	3		
Chapter 2	Liter 2.1 2.2 2.3 2.4	 cature Review Runoff Hydrograph. Unit Hydrograph. 2.2.1 Synthetic Unit Hydrograph. 2.2.1 Synthetic Unit Hydrograph. SCS (or NRCS) Method. Snyder's Synthetic Unit Hydrograph. 2.4.1 Standard Unit Hydrograph. 2.4.2 Estimation of Model Parameters Cp and Ct. 2.4.3 Development of a Required Unit Hydrograph (assuming that Ct, Cp, L and Lc are known). 	. 5 .7 . 10 10 11		
Chapter 3	Meth 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.7	Introduction.Selection of Catchments.Collection of Rainfall and Runoff Data.Analysis of the Rainfall and Runoff Data.Derivation of Observed Unit Hydrograph.Collection of Catchment Characteristics Data.3.6.1Catchment 1.3.6.2Catchment 2.3.6.3Catchment 4.3.6.5Catchment 5.Development of SCS and Snyder's Synthetic UnitHydrograph from the Catchment Characteristics.3.7.1SCS Unit Hydrograph.3.7.2Snyder's Unit Hydrograph.Coefficients C _p and C ₁ in the Snyder's Method	16 16 17 17 17 18 18 19 19 19 19 20 20 22		
Chapter 4	Resu 4.1 4.2 4.3	Its and AnalysisIntroduction.Example Calculations and Results.4.2.1SCS Unit Hydrograph Derivation.4.2.2Snyder's Unit Hydrograph Derivation.4.2.3Observed Unit Hydrograph DerivationDetermination of Ct and Cp values.	26 26 29 . 30		

	4.3	Graph Comparison between SCS, Snyder's and Observed Unit Hydrograph	32		
Chapter 5	Discussion				
-	5.1	Introduction	36		
	5.2	Ratio of Qp calculated by the SCS and Snyder			
		over Observed Qp	36		
	5.3	Ratio of tp calculated by the SCS and Snyder			
		over Observed tp	38		
	5.4	Ratio of Tb calculated by the SCS and Snyder			
		over Observed Tb	39		
Chapter 6	DeFlood Enhancement				
•	6.1	Introduction	41		
	6.2	Enhancement of DeFlood	41		
	6.3	Inference Technique	45		
	6.4	Result of DeFlood Version 3	46		
	6.5	Conclusion	52		
Chapter 7	Conclusion and Recommendation				
	7.1	Conclusion	53		
		7.1.1 Suitability of SCS Method for Malaysian			
		Design Flood Estimation	53		
		7.1.2 Suitability of Snyder's Method for Malaysian			
		Design Flood Estimation	54		
	7.2		55		
Appendices					
	Appen	dix A Observed Unit Hydrograph Calculations			

Appendix A	Observed Unit Hydrograph Calculations
Appendix B	SCS Unit Hydrograph Calculations
Appendix C	Snyder's Unit Hydrograph Calculations
Appendix D	Ct and Cp Values Calculations
Appendix E	Ratio of Synthetic/Observed
Appendix A1	Curve Number Table
Appendix B1	Map of Selangor

References

Abstract

Design flood estimation is fundamental to ensure that economic engineering design of a hydraulic structure with adequate standards of safety can be achieved. The research studied the feasibility of two established and widely used synthetic unit hydrograph methods for Malaysian design flood estimation, therefore the better method could be recommended for ungauged Malaysian catchments. The SCS (now known as NRCS) and Snyder's procedures were developed based on studies of catchments ranging in size and geographic locations in the United States. In this research, five catchments in Selangor were selected and observed storm hyetographs and their corresponding total runoff hydrographs were studied in detail to derive unit hydrographs. In the record period of 3 years (1999-2001), 28 single storms were found to be suitable for unit hydrograph derivation. Applying the two methods, synthetic unit hydro graphs were derived using the geomorphologic characteristics of the catchments and comparisons were made between the synthetic unit hydrographs and the observed unit hydrographs. The study found that both methods calculate the peak discharges well, but Snyder's method calculates the time to peak better than the SCS. It can be inferred from the time to peak results that if one uses SCS method to perform flood estimation, the time taken for the flood to rise could be slower than the actual time. The base time is better calculated by the Snyder's method with a further improvement recommended by the study; that is changing the factor of 5 to 3 in the base time equation. The proposed reduce factor which has been verified is suggested based on the fact that Malaysia is a tropical country which is naturally warmer than the United States, hence storm water would possibly attenuates faster. The second part of the report discusses the enhancement of Deflood with a knowledge-based system to assist users with design flood estimations. An interactive, flexible and adaptable system that guides the users in decision making for design flood estimation was developed as a result of the study.

CHAPTER 1

1. INTRODUCTION

Reliable estimates of the magnitude and frequency of floods are essential for the economical planning and safe design of any water related structure such as bridges, culverts and drainage systems. Highway and railroad stream crossings designs, delineation of flood plains and flood-prone areas and management of water-control structures are all activities that require reliable estimates of the magnitude and frequency distribution of floods. If a water control structure is under designed, the results could be a disaster; the culverts may be overflowed, the dam may break, the highway may flood or the bridge may collapse. On the other hand, if the structure is over designed and hence very safe, the cost involved could be unreasonably expensive. Therefore, estimation of the magnitude of a flood of a certain recurrence interval to be adopted for the design of a water control structure (design flood) is fundamental to ensure that economic engineering design with adequate standards of safety can be achieved.

The design flood can be estimated using several methods like Regional Flood Frequency Analysis, Rational method and Unit Hydrograph method. While the Regional Flood

1.