VOLTAGE STABILITY PROBLEM IN POWER SYSTEM: ANALYSING PV AND QV CURVES

ABDIWALI HUSSEIN MOHAMOUD

Submitted to the Faculty of Electrical Engineering in partial fulfilment of the requirement for the degree of Bachelor in Electrical Engineering

Faculty of Electrical Engineering

Universiti Teknologi Mara

January 2015

i

ACKNOWLEGEMENT

Alhamdulillah, all praise to Allah S.W.T, the Most Gracious, The most Merciful, whose blessing and guidance have helped me through my thesis smoothly and a lot of graces to our beloved Prophet MUHAMMAD S.A.W.

Firstly, of all I would like to dedicate my real sincere appreciation to my beloved lecturer and FYP supervisor *Prof. madya Muhammad Yahya* for his continuous support, guidance, help, patient and encouragement starting from project preparation till it is successfully finished. I would like also to show and express my utmost appreciation to the FYP coordinator *Dr. Muhammad Nabil..* for his patience when it comes to the end the most difficult moments.

Secondly, I would like to thanks my beloved family for their support in terms of motivations, advices and specifically in terms of financial support. Also thanks to all my lecturers who gave me a lot of knowledge during my time of studying. I would like to clear up my sincere gratitude towards to Electrical Engineering department of Universiti Teknologi MARA (UiTM) for excellent support in terms of providing invaluable knowledge and information for the whole period of the project.

Lastly but not least, grateful to all whoever take a part in making this project a success directly or indirectly, thank you for your help, motivations, encouragements, co-operations, suggestions, critics and comments in improving my project. This was an excellent experience and I hope that it will bring beneficial output to others as well. Sincerely appreciate all your kind-heartedness.

iv

ABSTRACTS

Power utilities are facing a challenge due to increasing load demands because of rapidly industries growth over a years. One of the problems that have been identified is voltage instability in power system. Voltage stability is the ability of the system to maintain the voltage magnitude under normal condition and also under heavy stressed condition. One of the causes of voltage instability is that the power system did not have the ability to meet reactive power demand. This will lead to a voltage collapse and power interruption in the system. In this project, different types of reactive power compensation methods such as shunt capacitor, STATCOM and SVC will be compared in terms of voltage stability and power losses reduction in power system. For the case study, modified IEEE 9 bus system will be used to do the comparison. Various performance measures are compared under different loading parameter for the modified IEEE 9 bus system. Important issues relation to reactive power compensation namely sizing and allocation are addressed.

TABLE OF CONTENT

CHAPTER

1

TITLE

PAGE

4

Declaration of thesis	i
Dedication	iii
Acknowledgements	iv
Abstracts	v
Table of content	vi
List of tables	vii
List of figures	х
List of symbols	xi
List of appendices	xiv
	/
1.1 Background	1
1.2 Objective of the project	2
1.3 Scope of the project	2
1.4 Problem statement	3
1.5 Outline of thesis	4

1.6 Summary of work 4

2.1 Relationship between Power, Voltage and Reactive power	8
2.2 Transfer of Power between active sources	11
2.3 Voltage stability	15
2.4 Summary	17
3.1 Methods to improve voltage stability problem	18
3.1.1 Shunt Capacitor	19
3.1.2 Static Var Compensator (SVC)	20
3.1.3 Static Synchronous compensator (Statcom)	22
3.2 Software used MATLAB/PSSE	24
4.1 Introduction	27
4.2 Base case	28
4.3 Placement Of The Reactive Power Compensation	30
4.4 Method Implementation	37
4.4.2 Shunt Capacitor (50Mvar)	39
4.4.3 SVC	40
4.4.4 STATCOM	41
4.5 Comparison	42
4.5.1 Voltage Profile versus Different Loading	42
4.5.2 Active Power and Reactive Power losses	46
5.1 Conclusion	48
5.2 Recommendation	49
REFERENCES	50
APPENDIX	51