SOLVING UNIT COMITMENT WITH SMART GRID CONSIDERATION USING EVOLUTIONARY PROGRAMMING INCORPORATING PRIORITY LISTING TECHNIQUE

This thesis is presented in partial fulfilment for the award of the Bachelor of Electrical Engineering (Hons)

of

UNIVERSITI TEKNOLOGI MARA MALAYSIA

FARHANA BINTI HARUN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA (UiTM) SHAH ALAM, SELANGOR DARUL EHSAN

ACKNOWLEDGEMENT

Firstly, I would like to express my greatest thanks to Allah for giving me the opportunity to everything that I required in completing this final year project.

My next greatest appreciation is to my parents and family for guiding me through life and always been there through ups and downs. The love and support from them is what keep me motivated each day.

Next appreciation goes to En. Muhammad Nazree b. Che Othman, thank you for giving me so many magnificence idea, guidance and knowledge during the completion of this project. Thank you for guiding me on how to think as an engineer, improve self-communication skill, collaborate in team and to respect others.

Lastly, thank you to my classmates and friends that had contributed into this report. For them that had been always standing close behind me to give their best support.

I hope that Allah will bless all of you for the support. Thank you.

iv

ABSTRACT

This paper proposed Evolutionary Programming incorporating Priority Listing technique to solve Unit Commitment problem in power system economics and planning. The objective of this research is to find the most economical cost for the unit commitment problem using the proposed technique while at the same time to study the effect of smart grid consideration to the conventional grid system. This research used 10 generating units as its basis for simulation with 24 hours of time intervals. The Evolutionary Programming incorporating Priority Listing technique is tested alongside with Evolutionary Programming technique as benchmarking purpose for both conventional Unit commitment problem and Unit commitment problem with smart grid consideration. The proposed Evolutionary Programming incorporating Priority Listing technique with smart grid consideration is expected to produce a better outcome in term of its operational cost compared to the conventional system. Finally, the result of the simulation of Evolutionary Programming incorporating Priority Listing with smart grid consideration is shown to verify the performance of smart grid.

٧

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	TABLE OF CONTENTS	vi
	LIST OF TABLES	ix
	LIST OF FIGURES	х
	LIST OF APPENDICES	xi
1	INTRODUCTION	1
	1.1 Background of Study	1
	1.2 Problem Statement	2
	1.3 Significance of Study	3
	1.4 Objectives of the project	4
	1.5 Scope of Work	4
	1.6 Thesis Organization	6
	1.5.1 Project Flowchart	6
2	LITERATURE REVIEW	7
	2.1 Introduction	
	2.2 Unit Commitment Problem	7
	2.2.1 Constraints in Unit	
	Commitment Problem	8
	2.3 Other Technique to solve Unit Commitment	9
	2.4 Smart Grid System	10
	2.4.1 Smart Grid Architecture	10
	2.4.2 Smart Grid Management	11
	2.4.3 Challenges of Smart Grid System	
	Implementation	12
	2.5 Renewable Energy Generation	13
	2.5.1 Economics of Renewable Energy Generation	n 13
	2.5.2 Type of Renewable Energy Generation	
	System in Malaysia	14
	2.5.2.1 Solar Generation System	14

2.5.2.1.1 Standalone Photovoltaic System (SAPV)	16	
2.5.2.1.2 Basic Schematic Diagram of A Simple PV		
Battery Power System	16	
2.5.2.1.3 Grid-Connected Photovoltaic	;	
System (GCPV)	17	
2.5.2.2 Micro hydropower Generation		
System	18	
2.5.2.2.1 Suitable sites for micro		
Hydropower	19	
2.5.2.2.2 Components of micro		
hydropower system	19	
2.5.2.3 Wind Energy Generation	20	
2.5.2.3.1 Wind turbine and		
Components	21	
2.5.2.3.2 Suitable sites for wind		
energy turbine installation	22	
2.5.2.3.3 Challenges in building wind		
generation system	23	
2.5.2.4 Biomass Energy Generation		
2.6 Summary	24	

N

3

4

METHODOLOGY		26
3.1 Introduction		27
3.2 Evolutionary Programming	1	27
3.2.1 History of Evolutionary	Programming	28
3.2.2 Basic Principle of Evolut	ionary Programming	28
3.2.3 Flowchart of Evolutionar	y Programming	31
3.3 Priority Listing		32
3.3.1 Basic Principle of Priority	y Listing	32
3.4 Evolutionary Programming incorp	orating	
Priority Listing		32
3.4.1 Evolutionary Programmi	ng incorporating	
Priority Listing Basic Pri	nciple	33
3.4.2 Flowchart of EP-PL	-	34

RESULT	36
4.1 System Data	36
4.2 Results and Discussion	37