Categorization of Internal Faults by using Artificial Neural Network (ANN)

Thesis presented in partial fulfillment of the requirement for Bachelor of Electrical Engineering (Hons.) UNIVERSITI TEKNOLOGI MARA

MOHD ANUAR BIN SHAFI'I Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 Shah Alam, Selangor, Malaysia May 2010

ACKNOWLEDGEMENT

In the name of Allah S.W.T, Lord of Universe who has given me strength and ability to complete this project and report. All perfect prices belong to Allah S.W.T. May his belong upon the prophet Muhammad S.A.W and members of his family and companions.

Firstly, I would like to express my sincere gratitude and appreciation to my supervisor, Assoc. Prof. Dr. Noraliza bte Hamzah for her continue support, generous guidance, help patience and encouragement in the duration of the thesis preparation until its completion.

Besides, I would also want to express this appreciation to Grahatech Resourses Sdn. Bhd for sharing their knowledge and providing the data prior to the preparation of this project.

To my truly beloved family especially my father and my mother , thank you for the support, encouragement, understanding and advices with never-ending concern for me.

Lastly, I want to express my friends for has been spending so much time and ideas in order for me to finish this report. Although the ideas seem to be simple, surely I can say that these simple ideas are the best.

The kindness, corporation and support from all of the above mentioned people would always be remembered and only Allah SWT could repay their kindness.

i

ABSTRACT

The main objective of this project is to create an intelligent model using image processing techniques in order to categorize the internal fault to four categories, which are low, intermediate, medium and high. Sample of internal fault location are captured using infrared thermography camera where the RGB color image are stored and processed using matlab. Processing involves impixelregion which includes creating a Pixel Region tool associated with the image displayed in the current figure, called the target image. This information is then being used to train a three layer Artificial Neural Network (ANN) using Levenberg Marquardt algorithm. A 168 samples are used as training, whilst another 168 samples are used for testing. The optimized model is evaluated and validated through analysis of performance indicators frequently used in any classification model.

TABLE OF CONTENTS

CONTENTS

PAGE

ACKNOWI	LEDGE	MENT		i		
ABSTRACT	Г			ii		
TABLE OF CONTENTS						
LIST OF FI	GURE	S		v		
LIST OF TA	ABLES			vi		
CHAPTER	1: INTI	RODUCTI	ON			
1.1	Backg	kground of Study				
1.2	Proble	em Statement				
1.3	Projec	ect Objectives				
1.4	Scope	ope of Work				
1.5	Orgar	Organization of Thesis				
CHAPTER	2: LITH	ERATURE	REVIEW			
2.1	Intern	al Fault				
2.2	Artificial Neural Network			6		
CHAPTER	3: THE	ORY AND	MODELING			
3.1	Internal Fault			7		
	3.1.1	Loose Cor	nnection or contact internal Conductor	7		
	3.1.2	Inferiority	in Internal Insulation of Electrical Equipment	9		
3.2	Artific	Artificial Neural Network (ANN)				
	3.2.1	Network A	Architecture	11		
	3.2.2	Fundamen	tal of Neural Network Structure	11		
	3.2.3	Operation Artificial Neural				
	3.2.4	Levernberg-Marquardt Backpropagation		14		
	3.2.5	Transfer Function		15		
		3.2.5.1	Log-Sigmoid Transfer Function	15		
		3.2.5.2	Tan-Sigmoid Transfer Function	15		

	3.2.5.3 Linear Transfer Function	16
	3.2.5 Learning Rate	16
	3.2.6 Momentum Rate	16
	3.2.7 Regression Analysis	16
3.3	Infrared Image Processing	17
CHAPTER	4: METHODOLOGY	
4.1	Organization Methodology	18
4.2	Data Collection	
	4.2.1 Category of Internal Fault	20
4.3	Data Analysis using Image Processing	22
4.4	Development of the ANN	
	4.4.1 Training Process	24
	4.4.2 Testing Process	26

CHAPTER 5: RESULTS AND DISCUSSIONS

5.1	ANN Configuration Selection	28
5.2	Network Optimal Parameter	32
5.3	Target Output versus Network Output	33
5.4	Properties of ANN Architecture	35

CHAPTER 6: CONCLUSION

6.1	Conclusion		36
REFEREN	CES		38
APPENDIX	K A		40
APPENDIX	KB		42