AN ARTIFICIAL IMMUNE SYSTEM (AIS) BASED IN LOAD FLOW OPTIMISATION

ZULKARNAIN BIN JAMALUDIN Faculty of Electrical Engineering Universiti Teknologi MARA 40450 Shah Alam Selangor Malaysia

OCTOBER 2004

ACKNOWLEDGEMENT

In the name of **ALLAH**, who is the Most Gracious, Most Merciful and HIM alone in worthy of all praise. To HIM all the praise go and to HIM all the thankfulness of giving me the opportunity to live day in and day out.

It is with great honor to have the opportunity to express my highest gratitude toward of my supervisor, PM Dr. Titik Khawa Abdul Rahman for giving me the encouragement and mostly support throughout the duration of this study. All the hours spent in discussions were highly remembered as valuable experiences to guide more for my future. Without the expertise from my supervisor, this project would not be successful as I hoped it will be. In inclusion to that are Pn. Bibi Norashiqin and Cik Siti Rafidah that throughout the semester never seem tired giving valuable advice to help improve the project.

With no exception, a millions of thanks goes to both of my parents who never give up teaching me to become the person I am today. To all my friends whom I shared and discuss expertise and experiences until today, many thanks it has been a bumpy and tricky road. To whom I failed to mentioned, who indirectly or directly contributed to this project, I thank you very much.

ii

ABSTRACT

The load flow problem can be expressed as a set of nonlinear simultaneous algebraic equations, and then it is possible to have multiple solutions. To overcome the limitations of conventional load flow method to obtain the multiple solutions in load flow problem, an artificial immune system based in load flow optimization is developed. The immune system is a complex cells, molecules and organs which have proven to be capable of performing several tasks, like pattern recognition, learning, memory acquisition, generation of diversity, noise tolerance, generalization, distributed detection and optimization. In this paper, the load flow problem is solved using Artificial Immune System (AIS) optimisation technique. The AIS programme was developed using MATLAB programming language.

Keywords: An Artificial Immune System, Load Flow Solution

TABLE OF CONTENTS

CHAPTER DESCRIPTION PAGE 1 **INTRODUCTION** 1.1 Introduction 1 1.2 Objective 2 1.3 Aim of The Project 2 1.4 Scope of Report 2 1.5 Literature Review 3 1.5.1 Introduction to Load Flow 3 1.5.2 Load Flow Technique Solution 4 1.5.2.1 Genetic Algorithm 4 1.5.2.2 Evolutionary Programming 4 1.5.2.3 The Gauss-Seidel 5 1.5.2.4 The Newton Raphson 5 1.5.2.5 The Decoupled Load Flow 6 1.5.3 An Artificial Immune System (AIS) 6

LOAD-FLOW ANALYSIS

2

2.1	Introduction	8
2.2	Type of Buses	9
2.3	The Sign of Real and Reactive Powers	11
2.4	Power Flow Equation	12
2.5	Newton Raphson Power Flow Solution	13
2.6	Power Flow Programs	18
2.7	Data Preparation	20

ARTIFICIAL IMMUNE SYSTEM (AIS)	
3.1 Introduction	22
3.2 The Clonal Selection Theory	23
3.3 Reinforcement Learning and Immune Memory	25
3.4 Artificial Immune System in load Flow Problem	28

4 METHODOLOGY

3

5

6

4.1	Introduction	29
4.2	Methodology	30
4.3	Formulation Applied to AIS Programming	32
4.4	Flowchart Procedures	33
4.4	4.1 Initial Population	33
4.4	4.2 Cloning Selection	34
4.4	4.3 Mutation Selection	35
4.4	4.4 Objective and Fitness Function	36
4.4	4.5 Comparing Objective	36
4.5	Test System	37
	-	
RESU	JLT AND DISCUSSION	
5.1	Result Voltage and Angle	39
5.2	Result on Real and Reactive Power	40
5.3	Overall Result of AIS Programming	42
CON	CLUSION	
6.1	Summary	46

6.2 Further Research 47