PERFORMANCE ANALYSIS OF DUAL-AXIS SOLAR TRACKING SYSTEM

This report is presented in partial fulfillment for the award of the Bachelor of Engineering (Hons.) Electrical UNIVERSITI TEKNOLOGI MARA (UiTM)

MUHAMMAD IKHSAN BIN ABD MANAN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR, MALAYSIA JULY 2013

ACKNOWLEDGEMENT

In the name of Allah S.W.T, The Most Gracious and The Most Merciful

There are no proper words to convey my deep gratitude and respect to my Final Year Project supervisor, **Mr. Zulkifli Othman**. He has inspired me to become an independent student and helped me realize the power of critical thinking. He also taught me what a brilliant and hard-working student can accomplish.

My sincere thanks must also go to **Mr. Syed Abdul Mutalib Al-Junid** for generously gave his time to offer me valuable comments toward improving my project.

Last but not least, thanks to my beloved family and friends for their support and help throughout this project.

The efforts of those involved in preparing this report are also greatly appreciated.

ABSTRACT

This project presents the performance analysis of dual-axis solar tracking system using Arduino platform. The ultimate objective of this project is to investigate which one is better between static solar panel and solar tracker. This project is divided into two stages, which are hardware and software development. In hardware development, five light dependent resistors (LDR) were used to capture the maximum light source from the sun. Two servo motors also were used to move the solar panel at maximum light source location sensed by the LDRs. While for the software part, the code was constructed by using C programming language and targeted to the Arduino UNO controller. The performance of the solar tracker was analyzed and compared with the static solar panel, and it shows that the solar tracker is better than the static solar panel in term of voltage, current and power. Therefore, the solar tracker is proven working for capturing the maximum sunlight source for solar harvesting applications.

TABLE OF CONTENTS

Approval	i
Declaration	ii
Acknowledgment	iii
Abstract	iv
Table of Contents	v
List of Figures	viii
List of Tables	х

CHAPTER

DESCRIPTION

PAGE

1	INTR	RODUCTION	
	1.1	Background of Study	1
	1.2	Problem Statement	3
	1.3	Objectives	4
	1.4	Scope of Project	4
	1.5	Thesis Organization	5
2	LITE	RATURE REVIEW	
	2.1	Photovoltaic System	6
	2.2	Type of Photovoltaic System	9
		2.2.1 Stand-alone PV system	9
		2.2.2 Grid-connected PV system	10
		2.2.3 Hybrid PV system	11
	2.3	Photovoltaic as a Generator	12
	2.4	Solar Cell	13
		2.4.1 Solar Cell Model	14
	2.5	Standard Rating of Photovoltaic Module	17
	2.6	Solar Tracker	18

2.6.1 Polar 19

CHAPTER

3

DESCRIPTION

	2.6.2 Horizontal	20	
	2.6.3 Dual-axis	21	
2.7	Current Driver Tracker Types	22	
	2.7.1 Passive Tracker	22	
	2.7.2 Active Tracker	24	
	2.7.3 Open Loop Tracker	25	
2.8	Maximizing Power Obtained From Solar Cells	26	
2.9	Tracking Technique	28	
MET	HODOLOGY		
3.1	Introduction	29	
3.2	Project Description	29	
3.3	Principles of Operation		
3.4	Project Implementation	31	
	3.4.1 Hardware Implementation	32	
	3.4.1.1 Mechanical Design	32	
	3.4.1.2 Electronic Design	33	
	3.4.1.2.1 LDR	33	
	3.4.1.2.2 Servo motor	34	
	3.4.1.2.3 Arduino UNO	35	
	3.4.2 Software Implementation	36	
	3.4.2.1 Arduino Environment	36	
	3.4.2.2 Software Flowchart	37	

4 RESULTS AND DISCUSSIONS

4.1	Procedure	38
4.2	Results	39
	4.2.1 During fine and sunny weather	39
	4.2.2 During cloudy weather	42
4.3	Discussions	45
4.4	Model of project	46