APPLICATION OF EVOLUTIONARY PROGRAMMING FOR SOLVING HYDROTHERMAL COORDINATION

Thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Honors) UNIVERSITI TEKNOLOGI MARA

MOHD ZAINI BIN ABD. GHANI FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR DARUL EHSAN

ACKNOWLEDGMENT

All the praise to Allah S.W.T. The Most Gracious and Merciful who has given me the strength, ability and patience to complete this project.

I would like to convey my deepest gratitude and appreciation to my project supervisor, Prof. Madya Dr. Titik Khawa Abdul Rahman for her guidance, suggestion and advance for completion of this project.

Special thanks to my beloved family, especially my mother, my father and my wife who are dearest person in my life and encouragement they have given. Last but not least, special thanks to all my colleagues for the help and motivation given to me in completing this project.

ABSTRACT

This paper describes an efficient method of solving Hydro Thermal Coordination using Evolutionary Programming (EP) method within C programming language. This study focused to determine a schedule for the hydro and thermal generation, which will minimize the total production cost while balancing the generation with demand. Using LaGrange method will compare the results obtained using EP method.

TABLE OF CONTENTS

CHAPTER

DESCRIPTION

PAGE

Declaration	i
Acknowledgment	ii
Abstract	iii
Table of contents	iv
List of figure	vii
List of table	viii

1

BACKGROUND OF THESIS

1.1	Introduction	1
1.2	Aim of the project	2
1.3	Objectives	2
1.4	Scope of the thesis	2
1.5	Methodology	3

2

3

HYDROTHERMAL COORDINATION PROBLEM

2.1	Introduction	4
2.2	Scheduling Energy	5
2.3	The short-term hydrothermal	
	Scheduling problem	10

EVOLUTIONARY PROGRAMMING

3.1	Introduction	14
3.2	The data dictionary	14
3.3	Implementation	16

· 4

5

C PROGRAMMING

4.1	Introduction	19
4.2	A working C Program	20
4.3	If; relational operators	21
4.4	While statement	23
4.5	For statement	25
4.6	Initialization of variables	27
4.7	Floating point	29
4.8	Arithmetic	30
4.9	Else clause	31
4.10	Increment and Decrement operators	33
4.11	Arrays	34
4.12	Character Arrays; strings	36
4.13	#define, #include	37

EP BASED ON SHORT-TERM HYDROTHERMAL

SCHEDULING PROBLEM

5.1	Software development	39
5.2	Short-term scheduling problem	39
5.3	Objective functions	40
5.4	EP based on scheduling problem	41
5.41	Initialization	41
5.42	The fitness value	42
5.43	Mutation	43
5.44	Competition	44
5.45	Convergence test	45