MATLAB MODELLING OF SIMPLE PROPULSION SYSTEM

This project thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Honours) UNIVERSITI TEKNOLOGI MARA

MUHAMAD ASRI BIN SALLEH BACHELOR (HONS) IN ELECTRICAL ENGINEERING FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA

ACKNOWLEDGEMENT

Assalamualaikum w.b.t.

In the name of allah s.w.t, the most Beneficent and the merciful. All praises being to Allah s.w.t, Lord of the Universe, which also bless and regard to Nabi Muhammad s.a.w. His companion and the people who follow His path.

I would like to express my sincere gratitude and appreciation to my project supervisor Ir. Muhammad Aris Bin Ramlan for professional guaidance and give a full support to complete this paper successfully.

I would also like to express my respect and appreciation to my beloved parents, Salleh Bin Ahmad and my understanding wife, Maisara Binti Ishak and my beloved family members for their moral and spiritual support.

Lastly, I would like to express a million thanks to all my understanding friends especially to Saiful Azhar Abdul Manaf and Shahrul Amin Md. Tohid, because of co-operation and discussion assisting with the new idea in developing the project. I also would like to wish a very thankful for those have been supportive and giving me encourage.

Thank you very much.

Muhamad Asri Bin Salleh Faculty of Electrical Engineering Universiti Teknologi MARA Shah Alam, Selangor

NOVEMBER 2007

ABSTRACT

This paper presents the dynamic characteristic of electric propulsion systems and explains why these developments are economically and operationally desirable. It describes the application of electric motors and their converters into a ship's propulsion system and discusses the characteristics and attributes of each system's operation and control. Using the capability of Matlab/Simulink software, the dynamic characteristics of the induction machine will be analyzed. A Simulink model enables various operating characteristics of the propulsion system to be determined and analyzed particularly its dynamic characteristics during the starting period of the system. The main objective of this project is to study dynamic characteristic of Induction motor propulsion system.

TABLE OF CONTENTS

INTRODUCTION

CHAPTER 1

PROPULSION SYSTEM EVALUATION

1.1.	An Eval	uation Methodology	1
	1.1.1	Selection criteria	1
	1.1.2.	Design goals	2
1.2.	Compar	ison Between Mechanical And Electrical Propulsion	2
	1.2.1	Simplicity And Flexibility	3
1.3	Advanta	ges Of Electrical Propulsion System	4
	1.3.1	Applications Of Electrical Propulsion System	4
	1.3.2	Advantages	4
1.4	Electric	Drives for Research Ships	5

CHAPTER 2

ELECTRICAL PROPULSION DRIVES

2.1	Introduction	6
2.2	Two/Four Quadrant Control	
2.3	Propulsion System Motors	7
	2.3.1 The AC Motor	8
	2.3.2 Induction Motor Drives	8
2.4	Converter for Induction Motor Drives	8
	2.4.1 Induction motor systems	9
2.5	The AC/PWM Inverter /AC Induction Motor Drive	10
	2.5.1 System Description	10
	2.5.2 Control complexity	12
	2.5.3 Three-Phase Induction Motor Operation	12
	2.5.4 Induction Machine Modes Of Operation	14
	2.5.5 Drive advantages	15
	2.5.6 System attributes	16

CHAPTER 3

SIMPLE PROPULSION SYSTEM MODEL USING MATLAB/SIMULINK					
3.1 Simulation of electrical propulsion system	17				
3.2 Model Description					
3.2.1 General Description	18				
3.2.2 Voltage supply onboard ship	19				
3.2.3 AC-DC-AC Converter	20				
3.2.4 Diode Rectifier	21				
3.2.5 PWM Inverter	21				
3.2.6 Controlling the Inverter Bridge with a Pulse Generator	22				
3.2.7 Loading and Driving the Motor	22				
3.3 Introduction to MATLAB/Simulink	23				
3.3.1 Tool for Simulation	24				
3.3.2 Tool for Model-Based Design	24				
3.4 Simulink Library (model blockset)	25				
3.4.1 Induction Motor using MATLAB/simulink	26				
3.4.2 Inertia, friction factor, and pairs of poles	28				
3.4.3 Universal Bridge (inverter)	29				
3.4.4 Three-Phase Transformer (Two Windings)	32				
3.4.5 DC Supply Voltage and Measurement Components	35				
3.4.6 Function block	41				

CHAPTER 4

SIMULATING RESULT AND DISCUSSION

4.1 Simulating The PWM Signal With Continuous Integration Algorithm	43
4.2 Controlling the Inverter Bridge with a Pulse Generator	45
4.3 Simulating of AC-DC-AC Converter	45
4.4 Varying frequency	47