NEUTRAL POINT TYPE BOOST CONVERTER CIRCUIT APPLICATION FOR SHORT RANGE WIRELESS ENERGY TRANSFER

This thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Hons.) Electrical

of

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

NORAZLIN BINTI AYOB 2011405124 Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR DARUL EHSAN

ACKNOWLEDGEMENT

Alhamdulillah, I'm mostly thankful and praised be to Allah, the Most Gracious and the Most Merciful for bless me and given me the opportunity to undergo and complete the Final Year Project title as "Neutral Point Type Boost Converter Circuit Application for Short Range Wireless Energy Transfer".

I would like to thank everybody that is involved in helping and sparing their time to guide us in completing this project. Therefore here, I would like to take this opportunity to express my gratitude to my supervisor Ir. Hj. Harizan Che Mat Haris, my co-supervisor Dr. Muhammad Nabil Bin Hidayat and also not forgetting to Madam Norazam Binti A Wahab for giving the guideline in completing this project.

I'm also would like to thank to my beloved families for their support and not forgetting to my group discussion, Muhammad Amin Bin Ahmad and Nurul Izzati Binti Rostam, also to all my friends that help me in giving motivations, moral support and ideas in finishing this project.

ABSTRACT

In this project, the Neutral Point Type Boost Converter Circuit used for application short range Wireless Energy Transfer. This converter converts current from AC to DC output. Neutral Point Type Boost Converter Circuit chosen because this type can reduce high smoothing voltage with less circuit complexity [1] and reducing cost. This circuit is the most effective method to reduce Total Harmonic Distortion (THD). THD will provide the circuit with greater efficiency and also can cause serious consequences to power distribution systems in the form of harmonic distortion [2]. Energy is to be transferred wireless within short range to determine the circuit efficiency and capability. Energy will transfer within wireless based on magnetic resonance. Magnetic resonance coupling is a new concept in wireless energy transmission [3]. The resonant nature of the process ensures a strong interaction between the sending and receiving unit [4]. For this project, the series resonant used application for wireless energy transfer. Energy can transfer within wireless with two methods such as near-field method and far-field method. For short range wireless energy transfer, near-field method will be use. For develop and simulate the circuit, PSim software will be used to obtain the results. After that, hardware will be setup to get actual result and make the comparison between simulation result and experiment result.

iv

TABLE OF CONTENTS

DEC	LARAT	TION	i	
APP	ROVAL	4	ii	
ACKNOWLEDGEMENT				
ABSTRACT				
TAB	LE OF	CONTENTS	v	
LIST	r of fi	GURES	vii	
LIST OF TABLES				
LIST	r of sy	MBOLS OF ABBREVIATIONS	х	
LIST	r of fo	ORMULAS	xi	
СНА	PTER	I: INTRODUCTION		
1.1	BACI	KGROUND OF STUDY	1	
1.2	PROE	BLEM STATEMENT	2	
	1.2.1	Problem Identification	2	
	1.2.2	Significance of the Study	2	
1.3	OBJE	CTIVES	3	
1.4	SCOF	PE OF RESEARCH	4	
1.5	THES	SIS ORGANIZATION	5	
CHA	PTER	2: LITERATURE REVIEW		
2.1	NEU	NEUTRAL POINT TYPE BOOST CONVERTER		
	2.1.1	Switching Operation	8	
	2.1.2	Active Filtering Method	9	
	2.1.3	Charge Pump	10	
2.2	WIRELESS ENERGY TRANSFER		12	
2.3	RESC	RESONANT CONVERTER CIRCUIT		
2.4	FUNCTION OF COMPONENTS			
	2.4.1	Power Transistor	16	

	2.4.2 Power MOSFET	17	
CH	APTER 3: METHODOLOGY		
3.1	FLOWCHART	18	
	3.1.1 Basic switching operation	22	
3.2	NPT BOOST CONVERTER WITH ACTIVE FILTERING	26	
3.3	CIRCUIT OPERATION	27	
CHA	APTER 4: RESULTS AND DISCUSSION		
4.1	SIMULATION PART	32	
4.2	HARDWARE PART	38	
	4.2.1 Driver Circuit	38	
	4.2.2 NPT Boost Circuit by Experimental	42	
CHAPTER 5: CONCLUSION			
CHAPTER 6: RECOMMENDATION FOR FUTURE WORK			
REFERENCES			
APP	PENDICES		
APPENDIC A: MOSFET IRF540			
APPENDIC B: HALF-BRIDGE DRIVER IR2153			
APPENDIC C: ELECTROLYTIC CAPACITOR			
APPENDIC D: TECHNICAL PAPER			