

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA SHAH ALAM SELANGOR DARUL EHSAN

OPTIMAL LOAD SHEDDING IN LOSS MINIMIZATION USING MULTISTAGE ARTIFICIAL IMMUNE SYSTEM

NUR AMALINABINTI RAHMAD BACHELOR OF ELECTRICAL ENGINEERING (HONOURS) 2010673788

JULY 2013

ACKNOWLEDGEMENT

Firstly, the author wishes to express highest appreciation to those who have been contributed in completing this project. Deepest gratitude conveyed to Miss Norlee Husnafeeza binti Ahmad for her guidance, critics and valuable thoughts.

Secondly, special thanks to both honorable panels, Dr. Hasmaini ninti Mohamad and Mr. Muahammad Nazree bin Che Othman for their comments, priceless suggestions and outstanding deliberations to improve the project during the project presentation

Most importantly I want to extend my gratitude to my family for their support, patience and assurance during my pursuit for higher studies. They have encouraged me throughout my education, and I will always be grateful for their sacrifice, kindness and love.

Finally not to forget, thank you to everybody who is directly or indirectly contributed because their perspective and guidance helped greatly to point me in the right direction upon completing this project.

ABSTRACT

Voltage collapse is one of the problems in power system. It can even cause blackout and bring serious negative feedback to consumers especially for industrial sector. Everything is counted when it comes or involves money. Therefore it is important to ensure the stability of the system. Optimization in load shedding is proposed to enhance voltage stability. Increases in load demand, disturbance or changes in power system operational will ascend the instability of the voltage [1].

This paper presents the optimal load shedding by using Multistage Artificial Immune System (MAIS). Besides that, it will also give reflection to the cost where the cost will be minimized and at the same time it will improve the voltage profile. The objective of this paper is to minimize the system losses as well as studying MAIS. The numerical simulation on the IEEE 30-bus power system is going to be used in this paper.

Keywords:

Load Shedding, Loss Minimization, Artificial Immune System, Multistage Artificial Immune System

TABLE OF CONTENTS

ACKNOWLEDGEMENTi			
ABSTRACTii			
TABLE OF CONTENTS iii			
1. CHAPTER 1: INTRODUCTION			
1.1.	Introduction1		
1.2.	Aim of the Project2		
1.3.	Scope of the Project		
1.4.	Review		
1.4	1. Load Flow Studies		
2. CH	APTER 2: LOAD SHEDDING7		
2.1.	Introduction7		
4.1.	Techniques for Load Shedding7		
5. CHAPTER 3: ARTIFICIAL IMMUNE SYSTEM9			
5.1.	Introduction		
6.1.	Differentiation between Immune System and Immune Algorithm12		
6.2.	The Clonal Selection Theory13		
6.3.	Immune Network Theory14		
6.4.	Negative Selection Mechanism14		
6.5.	Reinforcement Learning and Memory15		
7. CH	APTER 4: MATLAB PROGRAMMING17		
7.1.	Introduction17		
7.2.	Programming and Application Development18		
7.3.	An Overview MATLAB History		
7.4.	Syntax		
7.5.	Starting a MATLAB Session		
4.5	.1. The Desktop		
4.5	.2. Quitting the MATLAB Program		
4.5	.3. Confirm Quitting		
7.6.	Variables		
7.7.	Numbers		
7.8.	Operators		
7.9.	Functions		
4.9	.1. Examples of Expressions		

7.10.	Vectors/Matrices	26		
4.10.1	. Semicolon	29		
4.10.2	Limitations	29		
8. CHAI	PTER 5: METHODOLOGY	32		
8.1. In	troduction	32		
8.2. IE	EEE 30-Bus System	34		
8.2.1.	Busdata file	34		
8.2.2.	Linedata file	35		
8.3. G	enerating Base Case	35		
8.4. Si	ngle Stage Artificial Immune System Algorithm	35		
5.4.1.	Initialization	36		
5.4.2.	Cloning Process	36		
5.4.3.	Mutation	36		
5.4.4.	Selection	37		
5.4.5.	Convergence Test	37		
8.5. M	lultistage Artificial Immune System Algorithm	39		
5.5.1.	Initialization	39		
5.5.2.	Cloning Process	39		
5.5.3.	Mutation	40		
5.5.4.	Selection	40		
5.5.5.	Convergence Test	40		
9. CHAI	PTER 6: RESULT AND DISCUSSION	42		
9.1. In	troduction	42		
9.2. R	esults and Discussion	42		
10. CH	APTER 7: CONCLUSION AND FUTURE DEVELOPMENT	45		
10.1.	Conclusion	45		
10.2.	Future Development	46		
REFERENCES				
APPENDIX A: IEEE 30-Bus Power System				
APPENDI	APPENDIX B: Multistage Airtificial Immune System			
APPENDIX C: Thesis				