UNIVERSITI TEKNOLOGI MARA

EXPERIMENTAL INVESTIGATION ON THE PNEUMATIC LIFTING METHOD OF DEFORMABLE OBJECT

RABI'ATUL'ADAWIYAH BINTI JA'AFAR

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science (Mechanical Engineering)

Faculty of Mechanical Engineering

July 2019

ABSTRACT

Industries such as agriculture and food have used polypropylene bag widely used as it is cheap and easy to find. Fertilizers industry especially required to use the polypropylene bag that have high protection barrier against the high-level humidity especially for countries such as Malaysia. By layering the polypropylene bag with another polypropylene bag, the moisture problem can be overcome. In general, the polypropylene bag for fertilizers consists of 2 layer which is the woven polypropylene bag and the clear polypropylene bag. However, when combining both polypropylene bags, the worker are required to insert the clear polypropylene bag manually into the woven bag. Indirectly this increases the production time, increasing the number of workers which also increases the number of errors. Furthermore, repetitive works will cause strain to the worker which also increases the number of errors. To overcome this issue, the automated polypropylene bag assembly system is proposed. In this research, we are only focusing on the lifting method of the automated polypropylene bag assembly system via pneumatic method. As a result, the automated polypropylene bag assembly system, can reduce number of worker and avoid repetitive works. This will also give out cleaner and consistent last product.

ACKNOWLEDGEMENT

Firstly, I wish to thank Allah SWT for giving me the opportunity to embark on my Master and for completing this challenging journey successfully. My gratitude and thanks go to my supervisor Prof. Ir. Dr. Hj. Muhammad Azmi Ayub.

My appreciation goes to the staff of Mechatronics and Automation lab Encik Elwan, Encik Zul and also Puan Fazlin who provided the facilities and assistance during testing. Special thanks to my colleagues and friends for helping me with this project.

Finally, this thesis is dedicated to my father and mother for the vision and determination to educate me. This piece of victory is dedicated to both of you. Alhamdulillah.

TABLE OF CONTENTS

	Page	
CONFIRMATION BY PANEL OF EXAMINERS	ii	
AUTHOR'S DECLARATION		
ABSTRACT	iv v vi	
ACKNOWLEDGEMENT		
TABLE OF CONTENTS		
LIST OF TABLES	ix	
LIST OF FIGURES	X	
LIST OF ABBREVIATIONS	xiii	
CHAPTER ONE: INTRODUCTION	1	
1.1 Research Background	1	
1.2 Problem Statement	2	
1.3 Objectives of The Research	3	
1.4 Significant of The Research	4	
1.5 Scope and Limitation of the Research	4	
CHAPTER TWO: LITERATURE REVIEW	4	
2.1 Introduction	5	
2.2 History of Gripper	5	
2.2.1 Application of Gripper in Manufacturing Industry	6	
2.2.2 Type of Gripper	7	
2.3 Pneumatic System	8	
2.3.1 Basic Component of The Pneumatic System	8	
2.3.2 Compressor	11	
2.3.3 Directional valve	12	
2.4 Actuators	13	
2.5 Manipulation of Deformable Object/ Flexible Object	19	
CHAPTER THREE: METHODOLOGY	20	

3.1	Introduction			
3.2	2 Conceptual Design			
3.3	.3 Test Rig Setup			
	3.3.1 D	esign of Test Rig	23	
3.4	Actuator		25	
	3.4.1 Se	election of Actuator	25	
3.5	Vacuum Ge	enerator/ Vacuum Ejector	27	
3.6	Gripper/ Va	acuum Cup	28	
	3.6.1 Se	election of Gripper	28	
3.7	Control System			
	3.7.1 N	ational Instrument myRIO	31	
	3.7.2 D	esign of Lifting Method Control System Hardware	34	
	3.7.3 D	esign of Lifting Method Control System Software	34	
3.8	Chapter Su	mmary	35	
CH	APTER FO	OUR: EXPERIMENTAL THEORY	36	
4.1	Introduction	n	36	
4.2	Pneumatic	Actuator	36	
	4.2.1 E	quation of Motion	36	
	4.2.2 F	riction Force	37	
4.3	3 Suction Cup & Vacuum Ejector		38	
	4.3.1 T	heoretical Holding Force	38	
	4.3.2 T	heoretical Suction Force for Individual Suction Pad	41	
	4.3.3 R	esponse Time	41	
	4.3.4 S	uction Rate	42	
	4.3.5 S	uction Cup Sizing	43	
	4.3.6 F	inding Equation of the Graph line	44	
	4.3.7 F	inding Percentage Error	45	
4.4	Developme	ent of Computer Software	46	
	4.4.1 P	rogramming Flow Chart	46	
4.5	Chapter Su	mmary	52	
CH	APTER FI	IVE: RESULT AND DISCUSSION	52	
	5.1 Introduction			