UNIVERSITI TEKNOLOGI MARA

EFFECT OF PRETREATMENTS, SEED CONDITIONS AND FERMENTATION TIME ON AMINO ACID PROFILE AND ANTI-NUTRIENT CONTENTS OF SOYBEANS, CHICKPEAS AND GROUNDNUTS

NURUL AKMAL BINTI TAIB

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

May 2017

ABSTRACT

Soybeans, chickpeas and groundnuts are known to have high nutrient content but they also contain anti-nutritional factors that prevent full absorption of nutrients into our body. The aim of this study was to evaluate the changes in amino acid composition, tannin, phytic acid and trypsin inhibitor of the three selected legumes when subjected to different pretreatment conditions. The effects of fermentation time and initial seed conditions prior to fermentation were also analysed. AccQ•Tag method using HPLC was used to monitor the amino acid profile and spectrometric method was used to analysed the anti-nutrients compound. The results obtained for the raw legumes showed that soybeans has the highest amount of total amino acids (34.64 g/100g) followed by chickpeas (25.65 g/100g) and lastly groundnuts (23.20 g/100g). Similarly, tannin and trypsin inhibitor were found significantly higher in soybeans, followed by chickpeas and groundnuts. However for phytic acid, soybeans showed the highest content followed by groundnuts and lastly chickpeas. Pretreatment conditions were found to affect the total amino acids and anti-nutrient contents. For soybeans, the amount of total amino acids was found to increase by 8.7% after soaking, reduce by 4.3% after steaming and was not affected by de-hulling. For chickpeas, total amino acids was increase after soaking by 4.1% but was decrease after steaming and de-hulling by 8% and 2.8% respectively. However for groundnuts, both soaking and de-hulling increases total amino acids by 6.9% and 4.7% respectively while steaming reduces by 8%. The effect of pretreatments on tannin content showed similar results for all three legumes. Both de-hulling and steaming showed no significant difference in reducing tannin content compared to soaking. For phytic acid and trypsin inhibitor, significantly greater reduction of both anti-nutrients was shown by steaming compared to de-hulling and soaking. The effect of fermentation time was monitored at 18, 24 and 30 hrs after the legumes were inoculated with Rhizopus oligosporus spores. All legumes studied showed that 24 hrs of fermentation time gave the highest total amino acids content. However for anti-nutrients compound, decreasing trend was observed with the increase of fermentation time for all tempeh legumes. The effect of initial legume conditions (whole seed, split with hull attached and de-hulled split seed) was observed at 24 hrs of fermentation time. Legume with de-hulled split seed condition showed greater amount of total amino acids followed by split with hull attached and lastly whole seed condition. For tannin content, no significant difference was observed between initial seed conditions of de-hulled split seed and seed with hull attached for soybean and chickpea tempeh. Similarly for phytic acid content, no significant difference was observed between initial seed conditions of de-hulled split seed and seed with hull attached for chickpea tempeh. For trypsin inhibitor, the initial seed conditions of chickpeas and groundnuts prior to fermentation were significant in reduction of the anti-nutrients. This study showed that the optimum fermentation time of 24 hrs is the best time to consumed tempeh and the common practice of hull removal during tempeh production can be considered as unnecessary because it does not greatly improve the amino acids content and reduces the anti-nutrients present in the tempeh produced.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my master study and for completing this long and challenging journey successfully. This research paper is made possible through the guideline and support from everyone, including: lecturer, parents, family, friends, and University management.

Especially, please allow me to dedicate my acknowledgment of gratitude toward the following significant advisors and contributors:

First and foremost, I would like to express my sincere thanks to my thesis advisor, which is Dr. Aishah Bujang for her invaluable help and constant encouragement throughout the course of this research. I am most grateful for her teaching and advice, not only the research methodologies but also many other methodologies in life. I would not have achieved this far and this thesis would not have been completed without all the support that I have always received from her.

My appreciations also go to the laboratories staffs, for the permission of the use of analytical instruments and laboratory space for conduct the research. To Post Graduate of Faculty Applied Sciences management staff, Universiti Teknologi MARA, who are directly or indirectly involved in monitoring and managing my research progress. To research department, Institute of Graduate Studies (IPSIS), Universiti Teknologi MARA, who handling my study processes.

Finally, I sincerely thank to my parents, family (husband and sons), and friends, who provide the advice and financial support. The product of this thesis would not be possible without all of them.

Nurul Akmal Taib

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS	xii
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Study	1
1.2 Significance of Study	3
1.3 Problem Statement	3
1.4 Scope and Limitation of Study	4
1.5 Objectives of Study	5
CHAPTER TWO: LITERATURE REVIEW	7
2.1 Legumes, Seeds and Nuts	7
2.1.1 Nutrient Contents in Legumes, Seeds and Nuts	8
2.1.1.1 Amino Acids	8
2.1.2 Anti-nutrient Contents in Legumes, Seeds and Nuts	9
2.1.2.1 Tannin	10
2.1.2.2 Phytic Acid	11
2.1.2.3 Trypsin Inhibitor	12
2.2 Nutrients and The Anti-nutrients of Soybeans (Glycine max (L.) Merr.)	13
2.3 Nutrients and The Anti-nutrients of Chickpeas (Cicer arietinum L.)	14
2.4 Nutrients and The Anti-nutrients of Groundnuts (Arachis hypogeae L.)	16
2.5 Tempeh	18
2.5.1 Production of Soybean Tempeh	18

	2.5.2 Nutritional Values of Soybean Tempeh	22
	2.5.2.1 Essential and Non-essential Amino Acids Content in Soybean	23
	Tempeh	
2.6	Tempeh Made From Other Types of Legumes, Seeds and Nuts	24
CII	ADTED THDEE, DESEADOU METHODOLOOV	25
	APTER THREE: RESEARCH METHODOLOGY Materials and Chemicals	25 25
		25
	Experimental Work of The Study	25
	Production of Tempeh	29
	Samples Preparation	30
	Determination of Amino Acids Profile	30
	Determination of Tannin	32
	Determination of Phytic Acid	33
	Determination of Trypsin Inhibitor	34
3.9	Statistical Analysis	35
СН	APTER FOUR: RESULTS AND DISCUSSION	36
4.1	PHASE 1: Amino Acid Profile and Anti-nutrient Contents in Raw and	36
	Pretreatment of Soybeans, Chickpeas and Groundnuts	
	4.1.1 Amino Acid Profile of Raw and Pretreatments of Soybeans	36
	4.1.2 Amino Acid Profile of Raw and Pretreatments of Chickpeas	39
	4.1.3 Amino Acid Profile of Raw and Pretreatments of Groundnuts	41
	4.1.4 Anti-nutrient Contents of Raw and Pretreatments of Soybeans,	44
	Chickpeas and Groundnuts	
4.2	PHASE 2: Effect of Fermentation Time on Amino Acid Profile and	53
	Anti-nutrient Contents of Soybean, Chickpea and Groundnut Tempeh	
	4.2.1 Effect of Fermentation Time on Amino Acid Profile of	54
	Soybean Tempeh	
	4.2.2 Effect of Fermentation Time on Amino Acid Profile of	56
	Chickpea Tempeh	
	4.2.3 Effect of Fermentation Time on Amino Acid Profile of	57
	Groundnut Tempeh	
	4.2.4 Effect of Fermentation Time on Anti-nutrient Contents of Soybean,	60
	Chickpea and Groundnut Tempeh	