UNIVERSITI TEKNOLOGI MARA

ANALYSIS OF AUDIBLE ACOUSTO-OPTIC SIGNALS FOR DETECTION OF LOW VIBRATION SIGNAL USING 1mW LASER

MUHAMMAD ADIB AKRAM BIN MOHDAMI NORASHID

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Applied Sciences

August 2016

ABSTRACT

A new laser-safe optical microphone is designed to detect various changes in acoustooptic effect occurring due to small vibrating surfaces. The problem with the current optical microphone is that it uses Class III lasers in the range of 6 mW to 28 mW which is hazardous to the public. This device consists of a Class II 1 mW laser beam, which act as a sensing element directed to photo detector via a series of Fourier lenses followed with electronic circuit. Furthermore, the device could detect low audible frequency of 20 Hz with high clarity and able to detect low sound pressure amplitude of 65 dB. Results obtained shows significant detection of small vibration by recording the acoustic waves it releases with small traces of noises. Changes of amplitude, frequency, environment surrounding the vibration and simultaneous multiple source can be detected with significant signal to noise ratio of 6.70. Digital signal processing of acquired data involves filtering and amplification is done using MATLAB software and signal to noise ratio improved to 22.90 with sufficient amplitude to be directed to speaker for replaying purposes. This device find uses in stealth microphone, vibration sensor monitoring and characterizing sound profile in an area.

ACKNOWLEDGEMENT

First and foremost, my deepest gratitude for Allah Subhanahu Wa Taala. Alhamdulillah, all praises to Allah for the blessings in which without them this effort will never work out.

Special appreciation towards my supervisor, Prof. Dr. Hj. Mohd Kamil Abd. Rahman for his guidance and supervision throughout my entire time here. With his knowledge and ideas, he gives new insight and open up my mind to explore the knowledge on my own. I am much honored to do this research in Photonics Laboratory in Faculty of Applied Sciences, UiTM Shah Alam.

Not forgetting all accompanies during whole time here which is my friends, my colleague amd my laboratory members for giving a nice atmosphere that I can conduct my research in a happy and comfortable manner.

Lastly, to my parents Mohd Aminorashid bin Kasim and who never gives up and giving hope. So that I can endure all the hardship and problems.

I dedicate this work to all that is directly and indirectly helping this work takes place.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
CANDIDATE'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x

	<u>`</u>
CHAPTER ONE:	INTRODUCTION TO OPTICAL
	MICROPHONE

1.1	Introduction	1
1.2	Low Amplitude Vibration Contains Interesting Information	4
1.3	Detection Methods of Low Amplitude Vibration	6
1.4	Problems In Detecting Low Amplitude Vibration	6
1.5	Problem Statement	7
1.6	Objectives	8
1.7	Hypothesis	8
1.8	Significance of Study	8
1.9	Scope of Work	9
1.10	Summary of Chapters	11

CHAPTER TWO: THEORY AND LITERATURE REVIEW

2.1	Introduction	14
2.2	Acousto-Optics	14
2.3	Fourier Optics	17
2.4	Literature Review	18
2.5	Detecting Low Amplitude Vibration	21

	2.5.1 Applications Of Detecting Low Amplitude Vibration	22
	2.5.2 Advantages Of Detecting Low Amplitude Vibration	22
2.6	Comparison Between Vibrometer And Optophone	23
	2.6.1 Vibrometer	23
	2.6.1.1 Advantage & Weaknesses Of Vibrometer	24
	2.6.2 Optophone	26
	2.6.2.1 Advantages & Weaknesses Of Optophone	32
	2.6.3 Arising Problems By Using Optophone	32
	2.6.4 Proposed Solution On Modified Optophone	34
	2.6.5 New Advantages Of New Optophone	35
	2.6.6 New Application Of Optophone	36
	2.6.7 Electronic Circuit Review	36

CHAPTER THREE: METHODOLOGY OF RESEARCH

3.1	Optical Microphone Setup	41
3.2	2 Acoustical System	42
	3.2.1 Transducer Selection	42
	3.2.2 Signal Generation And Recording	44
3.3	Optical System	46
	3.3.1 Laser as Acoustic Signal Carrier.	47
	3.3.2 Photodiode Selection	48
3.4	Circuit Design	49
	3.4.1 Analog Filter	50
	3.4.2 Signal Amplifier	50
	3.4.3 Jack And Soundcard	51
	3.4.4 Circuit Designing	52
	3.4.5 Comparison between Directed and Recorded Signal.	55
	3.4.5.1 Intensity Versus Time Analysis	56
	3.4.5.2 Intensity Versus Frequency Analysis	56
	3.4.6 Examination of Optical Information Processing System	57
	3.4.7 Linearity of Signal for Sound Pressure.	59