UNIVERSITI TEKNOLOGI MARA

EFFECT OF Bi₂O₃-BaO OXIDE PAIR ON ELASTIC, OPTICAL AND DIELECTRIC PROPERTIES IN THE BORATE ANOMALY REGION OF 5Bi₂O₃-xBaO-(85-x)B₂O₃-10SiO₂ BORATE GLASS

'AIZZUDDEEN BIN MUSTAFA

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science**

Faculty of Applied Sciences

July 2017

ABSTRACT

A series of glasses with composition of 5Bi₂O₃-xBaO-(85-x)B₂O₃-10SiO₂ were prepared using conventional solid state melt-quenching techniques. Density, ultrasonic, UV-Vis, FTIR, XRD and Impedance spectroscopy measurements have been carried out to investigate the effect of Bi₂O₃ and BaO pair in the borate anomaly region. Density (ρ) and structural data with increasing BaO showed initial drop in density at x = 25 mol % before a large increase in ρ at x > 25 mol %. Longitudinal modulus (C_L), Shear modulus (μ), Young's modulus (Y), Bulk modulus (K_e) and Debye temperature (θ_D), showed weak changes for $x < 25 \mod \%$ followed by large increase for $x \ge 25 \mod \%$ indicating non-linear changes in stiffness and rigidity. The results indicate suppression of the borate anomaly at $x \le 25$ mol % which was initially expected with the partial replacement of B₂O₃ by BaO. Presence of unconventional former Bi₂O₃ seems to effectively suppress the modifying role of BaO in the region of $x \le 27 \mod \%$. Optical energy gap (E_{opt}) was found to decrease with increasing BaO content except for x = 32mol % where slight increase in E_{opt} was observed. Dielectric properties (ϵ) and AC conductivity (σ) measurement showed a minimum at the turning point where borate anomaly was suppressed ($x = 25 \mod \%$) indicating non-linear changes which is in good agreement in the previous report on elastic and structural behaviour which suggest that the borate anomaly was suppressed at $x \le 25 \mod \%$ BaO. The gradual decreased in ε ' for $x \le 25$ mol % was suggested to be due to the reduction in polarity of B₂O₃ structure which arise from the limitation of sp3 hybridization. The drop in σ in the same region is attributed to the blocking effect of Bi³⁺ and Coulomb repulsion which arised from effect of Bi₂O₃-BaO pair that blocks the migration of Ba²⁺ ions. However, both ε ' and σ increased at x > 25 mol % due to higher relative amount of Ba²⁺ ions which are mobile and contribute to formation of dipoles and improves AC conductivity. The minima in tan δ alongside with the lowest value of ε ' at x = 25 mol % BaO was suggested to be due to the formation of smaller space charge dipoles which in turn reduces the loss of energy in the samples. The dielectric relaxation behaviour showed that the elementary particles become more interacting to each other at $x \le 25$ mol % BaO and become less interacting with further BaO substitution.

ACKNOWLEDGEMENT

First and foremost, thanks to God for giving me the opportunity and health so that I can complete this long and challenging journey successfully. My gratitude and special thanks to my supervisor, Dr. Mahesh Kumar Talari for his guidance, support and always patience during my study. I would like to thank my co-supervisor Prof. Dr. Ahmad Kamal Hayati Yahya for his support, knowledge and guidance. Thanks to my parents Mr. Mustafa Bin Mahmood and Madam Hamidah Bte Hamat and siblings, Nur Syaahidah Binti Mustafa and Firdaus Bin Mustafa, without them, none of this would have been possible. Their love, patience, and support were vital to my success.

Also, thanks to Dean, Prof. Dr. Hj. Khudzir Bin Haji Ismail and also my Head of Programme Department, Prof. Madya. Dr. Abu Hassan bin Husin who always gives support and motivation in their speech and talk and also gives the permission and budget to attend conferences during my study.

Thanks also to my friends, Rosdiyana Bt Hisam, Rozilah Binti Rajmi, Syafawati Nadiah Mohamed, Mohd Fauzi Bin Maulud, Siti Wahidah Binti Nazari, Nor Asmira Binti Amaran, Siti Maryam Binti Kamal Arifin, Muliana Binti Ismail, Nurul Syahidah Binti Sabri, Mohd Hazrie Bin Samat, Mohamad Allif Bin Rosly, Abdul Mois Abdul Aziz, Amir Azienuddin Bin Azhar, Ahmad Zakwan Bin Mat Noh, Muhammad Armeen Syazwan Bin Md Ariff, Azwan Ali Bin Ahmad Zainal Latifi and Farah Adibah Ali who helped and support me during this research until I completed my study. This piece of victory is dedicated to all names mentioned above. Alhamdulillah.

v

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANELS OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATIONS	xvii
CHAPTER ONE: INTRODUCTION	
1.1 Background of Study	. 1

1.2	Problem Statements			
	1.2.1 Elastic and Optical		2	
	1.2.2 Dielectric and AC Conductivity		5	
1.3	Objectives of Research			
1.4	Scope and Limitation of Study			
1.5	Significance of Study			

CHAPTER TWO: LITERATURE REVIEW

2.1	.1 Introduction.2 Introduction to Glass And Oxide Glass			
2.2				
	2.2.1	Silicate glasses	10	
	2.2.2	Borate Glasses	11	

2.3	Borate Anomaly and Its Unique Properties			
2.4	Bi ₂ O ₃ -BaO Oxide Pair Effect			
2.5	Structural Properties in Glasses			
2.6	Density and Glass Packing Density			
2.7	Elastic Properties in Glasses			
2.8	Optical Properties in Glasses		26	
	2.8.1	Optical Energy Gap	26	
	2.8.2	Urbach Energy	29	
	2.8.3	Electronic Polarizability and Polarizability of Oxides	31	
	2.8.4	Metallization Criterion	33	
	2.8.5	Optical Basicity	33	
2.9	Introd	Introduction to Dielectrics and Dipoles		
	2.9.1	Formation of Dipoles and Polarization	35	
	2.9.2	Dipoles Response with Changing Frequency	38	
	2.9.3	Dielectric and Its Properties	39	
	2.9.4	Dielectric Relaxation and Dielectric Resonance	41	
2.10	Condu	activity and Electrical Transport	43	
CHAI	PTER 1	THREE: METHODOLOGY		
3.1	Mater	ials and Sample Preparation	46	
3.2	Sample Characterization		49	
	3.2.1	X-Ray Diffraction (XRD) and Fourier Transform Infrared		
		Spectroscopy (FTIR)	49	
	3.2.2	Ultrasonic Measurements	49	
	3.2.3	UV-Vis Spectroscopy	53	