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ABSTRACT 

Recently, large amounts of data from experimental measurements and 
simulations with high fidelity have extensively accelerated fluid mechanics 

advancement. Machine learning (ML) offers a wealth of techniques to extract 

data that can be translated into knowledge about the underlying fluid 
mechanics. Backward-Facing Step (BFS) is well-known for its application to 

fluid mechanics, particularly flow turbulence. Typically, a numerical 

approach can be used to understand the flow phenomena on BFS. In some 
instances, numerical investigations have a computational time limitation. This 

paper examines the application of ML to predict reattachment length on BFS 

flow. The procedure begins with a simulated meshing sensitivity of 1.27 cm in 
step height. This numerical analysis was conducted in the turbulent zone with 

a Reynolds number between 35587 and 40422. OpenFOAM® was used to 

perform numerical simulations using the turbulence model of k-omega shear 
stress transport. ML employed information in the form of Velocity and 

Pressure at every node to represent the type of turbulence. Using Recurrent 

Neural Networks (RNNs) as the most effective model to predict reattachment 
length values, the reattachment length was predicted with a Root Mean Square 

Error of 0.013. 

Keywords: Data-Driven; Machine-Learning; Fluids Mechanics; Backward-

Facing Step 
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Introduction 
 
In recent years, fluid mechanics has been a field full of data and complex 

problems. Many conventional research data, flow field observations, and 

extensive numerical simulations are accessible, accompanied by the 
development of high computing. The advantages of developing high 

computing-based programming architecture, current experimental capabilities, 

measurement methodologies, and "Big Data" have become indispensable to 
the advancement of fluid mechanics. In the meantime, a suitable and efficient 

method for processing enormous data quantities, such as the "cluster database," 

has been developed by Perlman et al. [1] and Giovanni [2] for data analysis 
and disclosure, which can be carried out. 

The rapid development of data has spread across various disciplines, so 

obtaining potential information quickly and accurately is the focus of research 
in this decade. Considering some hardware architecture improvements, 

storage, more efficient data transmission, rapid algorithm development, and 

development of open source-based frameworks, as well as data-driven research 
methods, have received much attention from academics and commercial 

opportunities. Deep Learning (DL), one with a neural network technique, has 

distinct benefits when confronted with nonlinear high dimensional problems, 
which are rapidly integrated into fluid mechanic research. 

Machine learning classes are supervised, semi-supervised, and 

unsupervised learning [3]. With many advantages, machine learning has been 
gradually applied to reduced-order models, prediction, reconstruction, closed 

turbulence models, and active flow control systems in fluid mechanics data 

analysis [3]-[4]. Rowley et al. [5] used Proper Orthogonal Decomposition 
(POD) to examine near-wall flow features at varying Reynolds numbers in a 

turbulent channel flow. 

The integration of machine learning with fluid dynamics has a history. 
Teo et al. [6] developed a neural network (neural network) to create particles 

in the photo to measure the velocity. The same is done by adding how many 

neural layers (multi-layer). The development continues, and the application of 
neural networks for adaptive controllers is carried out to reduce turbulence 

barriers [7]. This study describes a simple control network that employs 

suction and blowing based on the shear stress of the wall in the span direction 
to reduce up to 20 percent less wall friction. At this period, neural network 

applications are still difficult to comprehend, and neural network development 

is still in its infancy. 
The machine learning algorithm will simulate some fluid features, such 

as the lift profile given a specific airfoil geometry, and provide a proxy that 

can be optimized. Utilizing machine learning (ML) to tackle the fluid 
optimization problem directly is also possible by developing a machine 

learning model to influence the fluid's behaviour towards some engineering 
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aim via active control. Besides, many successful advances in using DL 

techniques to accelerate topology optimization [8]. 
In 2021, Usman et al. [9] were concerned with Fluid-Structure 

Interaction (FSI) in machine component design. Computational Fluid 

Dynamics (CFD) accuracy strongly comes from mesh size; hence, the 
computational cost is proportional to the resolution of tiny features. Multiple 

physics and scales exponentially increase the computing complexity, 

extending the process's duration. ML has demonstrated a highly promising 
ability to predict solutions for differential equations. It has provided excellent 

approximations in a fraction of the time required by standard simulation 

techniques [9]. 
In 2022, Vinuesa et al. [10] had a perspective on ML. They highlighted 

some areas of the highest potential impact, including accelerating direct 

numerical simulations, improving turbulence closure modelling, and 
developing enhanced reduced-order models. 

Based on the literature study above, DL is still being developed to 

estimate reattachment lengths in flow separation [11] with installability in the 
separation flow [12]. Reattachment length refers to the distance the separated 

flow returns to the surface. The reattachment length can be calculated using 

numerical models such as Unsteady Reynolds-Averaged Navier-Stokes 
(URANS) or Large Eddy Simulation (LES). In fluid flow analysis, 

reattachment length is commonly employed to determine how the flow 

separates and returns to the surface [11]. 
Determining the reattachment length is difficult to estimate, so this 

research's estimation is intended to validate changes due to changing 

parameters (pressure, velocity, Cf). A robust system has been developed in this 
case to determine the reattachment length accurately. Where the reattachment 

length is one of the sequences to minimize bubble separation, if it is reduced, 

it can be avoided to a minimum (drag reduction for external flow, pressure 
drop for internal flow) with the aim that it can be applied to active flow control 

or fluid power systems. 

The following is the structure of this paper: The section "Methodology" 
demonstrates our proposed technique and the experimental details. The 

following section provides the results and discussion. The last section 

summarizes our research. 
 

 

Methodology 
 

Selection turbulence models 
Consider the flow of fluid across a thin plate from the horizontal direction. 
When a fluid constructed velocity to a plate's leading edge, the layer of laminar 

boundary form begins. The flow is highly anticipated in the locality. A small 

distance from the leading edge, the transition zone evolves into a fully-fledged 
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turbulent region, as depicted schematically in Figure 1(a) [13]. The Reynolds 

number characterizes the flow transition between the three regions over the flat 
plate. The velocity and pressure fields can be predicted using the Navier-

Stokes equations in a steady-state laminar regime. The flow is assumed to be 

steady and uniform to predict the flow behaviour accurately. The Reynolds 
number remains constant in the laminar regime, so no averaging is required. 

Figure 1(b) depicts the fundamental physical and geometric models of the 

Backward-Facing Step (BFS) (under the 2-D scheme). The BFS methodology 
characterized a uniform velocity inflow, which may be either turbulent or 

laminar, originating from a channel of height (H). A step of height (h) is also 

present on the lower or upper sides. As depicted in Figure 1(b), The BFS flow 
field consists of several regions: the separated shear layer, the recirculation 

shear layer, the attached or recovery region, and the reattachment region. 
Figure 1(c) depicts a fundamental model encompassing the three 

essential characteristics of a separated flow: reattachment length, vortex 

evolution, and free shear flow separation. 

Solving the equations of Navier-Stokes is challenging because the 
Reynolds number fluctuates with time and space, leading to minor flow eddies 

and oscillations within an insufficiently short period. Under such conditions, 

the Reynolds Averaged Navier Stokes formulation is preferable.  
The turbulent flow close to a flat wall can be divided into four 

categories: "buffer layer," "laminar or viscous sublayer," "free stream," and 

"transition zone." Eventually, the flow turns completely turbulent at the 
transition zone, and the mean fluid velocity is related to the distance from a 

flat plate or stationary wall. Consequently, this region is sometimes referred to 

as the log law region. The laminar sublayer is too thin in the turbulence model. 
Hence, it is beneficial to approximate this region.  

A more detailed review of problems and successes of turbulent 

computing flow and the appropriate sources of turbulence modelling was 
explained by Argyropoulos et al. [16].  

 

RANS turbulence models 
First, eddy viscosity with zero equations is the simplest turbulence model. The 

first model is zero-equation, embracing the mixing-length concept developed 

by Prandtl (the equivalent of a gas's mean free paths) hypothesis [17]. 
Zero-equation models are insufficient for simulating every flow type 

because they disregard diverse physical characteristics, such as non-local 

effects on turbulent eddy viscosity. In addition, flow history is not considered 
to overcome these deficiencies. 

Second, similar to the turbulent model with zero-equation, a length 
scale must be specified for turbulence in this model. Results indicate that the 

One-equation eddy-viscosity model is unsuitable for indoor environments due 

to its inability to replicate turbulent flow at corners in the presence of flow 
barriers. This model demonstrates promising findings for zero flow separation. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 1: Generalization theory of BFS and their applications; (a) fluid flow 

over thin horizontal plate [13], (b) schematic BFS flow evolutions [14], and 
(c) various BFS model applications [15] 
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Third, two equations of the eddy-viscosity answer the kinetic energy 

dissipation rate and kinetic energy from the Reynolds transport equation. This 
model includes a partial differential transport equation and the expression for 

turbulent kinetic energy 'k' K-epsilon model (k-ε). Launder and Spalding's [18] 

one of the well-known models for modelling indoor and outdoor airflow is the 
k-ε model [2], [18]. 

The RNG k-epsilon (RNG k-Ԑ) employs statistical techniques to 

eliminate motion characteristics with low scales methodically. The RNG k–
epsilon is obtained using a statistical technique. The fluid flow regulating 

equation is adjusted concerning significant motion elements. The RNG k-

model cannot predict the effect of corners due to restrictions on using a coarse 
grid near walls and corners [19]-[20]. 

In the k-omega model (k-ω), Omega-ω is the ratio of (dissipation rate 

of energy from turbulent kinetic) over k (turbulent flow's kinetic energy). 
Omega-ω is the conversion rate of turbulent kinetic energy (k) to internal 

energy. Omega-ω represents the turbulence scale. Comparing the k-ε model to 

the k-ω model, The k- ω model is more accurate in predicting places with 
unfavourable pressure flow conditions [21]. Several k-ω models have been 

developed to address specific flow problems that the traditional model cannot 

adequately evaluate. These models include the shear stress transport (SST) k-
ω models and customized k-ω models. The (SST) k-ω model is commonly 

used when accurate flow predictions near wall boundaries are required, owing 

to its high efficacy. The (SST) k-ω is similar to the k-ε model and yields 
virtually identical results for various flow circumstances. 

 

Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) 
Higher computer capacity and user skills are required for LES. LES uses sub-

grid scale eddies filtering to solve the numerical simulation equation for large 

eddies. Comparing LES, K-ω, and RNG k-ω for air circulation analysis in a 
room environment, the study conducted by Tian and colleagues provides 

evidence that utilizing all three turbulence models results in a precise 

prediction of the experimental configuration [14]. In addition, he concluded 
that LES provides more accurate results than RANS models and that the results 

are close to the actual conditions. The LES technique can validate the K-ε 

model, given its capacity to address complex flow phenomena and consider 
the wall function. 

Some researchers use the DES model for complex enclosed airflow 

analysis, but it does not play a significant role in cold storage airflow analysis. 
RANS models are not good at predicting massive separation in free shear 

flows, whereas the DES model is suitable for very high flow instability. 
The performance and cost of DES are situated between those of the LES 

and RANS models. In BFS analysis, achieving steady-state conditions within 

the chamber is crucial. Once the flow has been properly established, there are 
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minimal perturbations. Utilizing LES or DES for such needs is an expensive 

and time-consuming endeavour. 
 

Recurrent Neural Networks (RNNs) 
RNNs are neural network data sequences where each value depends on 
previous values. This RNN is a feed-forward network with feedback loops 

[22]. RNNs are superior at simulating temporal dynamic behaviour to 

traditional feed-forward neural networks because they bring the concept of 
time to them [23]. Some RNNs units maintain a previous time step's internal 

memory state, denoting a context window of indefinite size. Numerous RNNs 

applications have been proposed and researched [24]. Basic RNNs and long 
short-term memory are the two most common units described in the following 

section. 

 
Basic recurrent neural networks 
As shown in Figure 2(a), The term of input time series with 𝑇 the model of the 

sample is {𝑥𝑡}𝑡=1
𝑇 . And the term of the output of models containing T samples 

of the specified time series is {𝑠𝑡 }𝑡=1
𝑇 . At time 𝑡, the input of models (𝑥𝑡) and 

it produces the result (prediction), 𝑆𝑡. The following equations define a 

fundamental RNNs unit: 
 

𝑆𝑡 = 𝑡𝑎𝑛ℎ (𝑥𝑡 𝑢 + 𝑆𝑡−1𝜔 + 𝑏) (1) 

 

The tangent function of hyperbolic, tanh(𝑥) = 
𝑒𝑥−𝑒−𝑥 

𝑒𝑥+𝑒−𝑥 
 . Moreover, the 

model's parameters 𝑢, 𝜔, and 𝑏 are given. In addition to the current input 𝑥𝑡, 

the model at time 𝑡 also receives its output from the prior period (𝑠𝑡−1). The 

hyperbolic tangent activation function's argument is the linear combination 

of x𝑡𝑢 + 𝑆𝑡−1𝜔 + 𝑏, which enables the unit to simulate nonlinear input-output 

relationships. Additional activation functions, such as logistic functions,  
rectified linear units (ReLU), or sigmoid functions, may be used in various 

implementations [25]. 

 
Long short-term memory networks 
RNNs are known to exhibit the issue of limited "short-term memory": 

historical data is utilized to generate forecasts if a sequence is of adequate 
length. The inability to effectively transmit vital information from preceding 

eras to subsequent ones, such as significant patterns from the same month in 

previous years. LSTM is a neural network that addresses short-term memory 
problems by utilizing gates to preserve and combine significant long-term 

memory with the latest input [26]. LSTM paved the path for substantial 

advancements in various domains, including speech recognition and natural 
language processing [27]. 
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(a) 

 

 
(b) 

 
Figure 2: Illustration of recurrent neural networks; (a) illustration of the 

basic-RNNs unit, and (b) illustration of LSTM unit 

 
Following Figure 2(b), it can be observed that each line facilitates the 

transmission of an entire vector value from the output of a given node to serve 

as the input for subsequent nodes. The circular symbols in orange signify point-
wise operations, while the rectangular shapes in pink represent the layers of a 

trained neural network. When lines merge, they become one, whereas when 

lines fork, their material is copied and sent to separate locations. 
The LSTM unit can selectively "remember" or "forget" information 

through the precise control of three gates, namely the input, forget, and output, 

which a specific memory cell state facilitates. The gates control the flow of 
data into and out of the state of memory cells. The following equations define 

an LSTM unit: 

 

 𝑖 =  𝜎 (𝑥𝑡𝑢𝑖 + 𝑆𝑡−1𝜔𝑖  + 𝑏𝑖) 

 

(2) 

 

 𝑓 =  𝜎 (𝑥𝑡𝑢
𝑓 + 𝑆𝑡−1𝜔𝑓  + 𝑏𝑓) 

 

(3) 

 

 𝑜 =  𝜎 (𝑥𝑡𝑢𝑜 + 𝑆𝑡−1𝜔𝑜  + 𝑏𝑜) 

 

(4) 

 

 �̃� =  𝑡𝑎𝑛ℎ (𝑥𝑡𝑢𝑐 + 𝑆𝑡−1𝜔𝑐  + 𝑏𝑐) 

 

(5) 
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 𝑐𝑡 =  𝑓 × 𝑐𝑡−1 + 𝑖 × �̃� 

 

(6) 

 

 𝑠𝑡 = 𝑜 × 𝑡𝑎𝑛ℎ(𝑐𝑡) (7) 

 

The logistic activation function or sigmoid is 𝜎(𝑥) =  
1

1+𝑒−𝑥 . The 

parameters learned to regulate the input gate 𝑖 are 𝑢𝑖, 𝜔𝑖, and 𝑏𝑖. The 

parameters learned that govern the forget gate 𝑓 are 𝑢𝑓, 𝜔𝑓,  and 𝑏 𝑓. The 

parameters learned to control the output gate 𝑜 are 𝑢𝑜, 𝜔𝑜,  and 𝑏𝑜 , and 𝑐 is 

the newly identified candidate activation for the condition of the cell 𝑢𝑐, 𝜔𝑐,  

and 𝑏𝑐. The cell state 𝑐𝑡 is utilizing a linear combination update 𝑐𝑡 =
𝑓 ×  𝑐𝑡−1 + 𝑖 × �̃�, where the previous cell state value is 𝑐𝑡−1. The input gate 

𝑖 identifies the aspects of the candidate 𝑐 will be utilized to alter the status of a 

memory cell, while the forget gate 𝑓 decides which elements of the previous 

memory are retrieved (𝑐𝑡−1) will be deleted. The output gate 𝑜 then determines 

which portions of the newly updated cell state (𝑐𝑡−1) will be displayed in the 

output 𝑠𝑡. 

 
Evaluation metrics 
Under Aparicio et al. [28], we publish our findings on evaluation metrics with 

Root Mean Squared Error (RMSE). The RMSE is calculated using: 
 

𝑅𝑀𝑆𝐸 =  √
1

𝑇
∑(𝑥𝑡 − 𝑥𝑡)2

𝑇

𝑡=1

 
(8) 

 

where 𝑥𝑡 is the Reynolds change rate for 𝑡, and 𝑥𝑡 is the corresponding 

prediction. 
 

Model geometry 
This study uses numerical simulation to develop and solve the model, meshing, 
numerical equation, and boundary condition setup. In addition, this work 

utilizes Python with the RNNs Method to support the neural networks. The 

main method in this study is divided into three major groups: training cases, 
machine learning models, and test cases. This study's flow methodology is 

explained in Figure 3. 

In the training case, it is the stage for generating datasets that will be 
used in the ML model stage; at this stage, the resulting dataset is in the form 

of fluid characteristics at each coordinate spread over the slicing plane and 

image capture where each data is obtained at each speed interval. The ML 
model is the next stage of research, namely creating a model that can estimate 

the reattachment distance. In constructing this model, the LSTM architecture 

is used.  
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In the final stage, the Test case is used to prove and evaluate the model 

that has been made. 
 

 
 

Figure 3: The current research framework 

 
Before starting the numerical simulations with various configurations 

of multiple components and levels, the CFD simulation program must be 

validated as suitable software for subsequent step activities. The validation 
technique aims to validate that the computational fluid dynamics with several 

parameter settings accurately depict the actual conditions and are consistent 

with experimental findings. In addition, after completing the validation 
procedure, the following step is to simulate a model. The estimation procedure 

is concluded by utilizing RNNs and analysing the evaluation metrics. 

BFS is one of the essential separation-flow models for theoretical and 
technical advancement. Airfoils at extreme attack angles, spoiler flows, inlet 

tunnel flow of an engine or inside a condenser/combustor, flow separation 

behind a vehicle, and flow around a boat or a complex building are examples 
of daily applications for backward-facing step flow [15].  

 

 
 

Figure 4: Cross-section of BFS fine mesh 
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BFS flows known as "backward flow," "sudden expansion flows," 

"back-step flow," "circular expanding flow," or "diverging channel" involve 
the fundamental characteristics of general separation flows. It is ideal for two-

dimensional topics discussed under certain flow conditions or with simple step 

geometries and has a three-dimensional nature. It is essential for separation 
flows over a wide Reynolds number range [15].  

From a flow dynamics perspective, the BFS flow is characterized by 

enormous separation vortices in the backward step zone and a few minor 
vortices at the corner. Occasionally, complex vortex series can occur under 

certain physical and geometric conditions. Many researchers have compared 

predictions with validated turbulent models against existing data. BFS in 
turbulent flow at boundary walls is a common occurrence. The investigation 

of flow structure in the BFS has been rigorously examined and investigated in 

the literature, shown in Table 1.  
 

Table 1: Recent study representative numerical studies of BFS 

 

Title Re Method Xi/h Comment 

McQueen et al. 
[29] 

5000 - 
6700 

OpenFOAM 5 – 6.7 Incompressible 

Sazhin et al. [30] 
10, 389, 

648 
Direct Monte 

Carlo 
0.7-2 Flowrate 

Talib et al. [31] 
5000 - 

20000 
CFD (fluent) 2-3 Heat transfer 

Loksupapaiboon et 
al. [32] 

15500 OpenFOAM 2-5 Incompressible 

 
A model of the BFS is created using blockMesh OpenFOAM. Figure 4 

shows the cross-section of the BFS. Additionally, the air is used as a working 

fluid in this task due to its simplicity and ease of operation. The model adapts 
the 2D Backward-Facing Step research, Langley Research Centre Turbulence 

Modelling Resource [33]. 

A mesh independence check was performed to make the solution more 
independent. In order to achieve the convergence criteria, the residual error 

was set to 10E-4, and the mesh must be refined globally to obtain more 

acceptable mesh cells [34]. The mesh must be refined until the error is reduced. 
At 767,500 cells, mesh independence is achieved, as shown in Table 2. 

 

Table 2: Number of cells in each case and mesh-dependent analysis              
Re=36000 

 

Case Coarse Medium Fine Rumsey [33] 

Number of cells 22,165 363,090 767,500 Experimental 
Reattachment length (mm) 0.0835 0.0797 0.0786 0.0790 
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Coarse, medium, and fine are the three types of two-dimensional 

meshing. As depicted, three two-dimensional scenarios were executed to 
undertake a grid independence analysis. The cell number in each scenario is 

displayed in Table 2. 

 
Table 3: Number of cells in each case and mesh-dependent analysis              

Re=36000 

 

Indicator Value 
Points 942312 
Internal Points 599800 
Faces 2473755 
Internal faces 2131245 

Cells 767500 

 

The distance from the "Step" to the point at which the direction of the 

Wallshear value receives a change called the reattachment length. Table 3 
show compares the experimental results and the recorded reattachment length 

values. 
 

Numerical setup 
It is intended to obtain flow characteristics at this stage as it passes the BFS. 
Numerical computing is performed with a custom-built open-source CFD 

package. OpenFOAM® "blockMesh" creates geometries along the x, y, and z 

axes. As shown in Figure 4, the model is given a unit width for the two-
dimensional condition [34]. 

For the meshing arrangement, the geometry is divided into six blocks 

with edge names: inlet, outlet, front and back, top wall, and bottom wall. 
Meshing is performed with a greater concentration of cells in the centre and 

along the walls. This method captures the turbulent flow in this region more 

accurately. A grid independence test was carried out [34]. In Table 3, the 
number of cells was shown in each case. The mesh arrangement for numerical 

computation is carried out on an acceptable mesh type with a 767500-cell 

number in the two-dimensional case. 
Based on the selection in the section "RANS Turbulence Models," it 

was considered that k-omega turbulence is a good model for understanding the 

flow separation process, where the turbulence model will be used in this study. 
The Reynolds Averaged Navier Stokes equation, represented by equation [35], 

determines the flow in the Backward-Facing Step. 

 

 �̅�𝑗
𝜕𝑢𝑖

𝑥𝑗
 − 

𝜕

𝜕𝑥𝑗
 [𝑣𝑒𝑓𝑓  (

𝜕𝑢𝑖

𝜕𝑥𝑗
 +  

𝜕𝑢𝑗

𝜕𝑥𝑖
)] = −

𝜕𝑝

𝜕𝑥𝑖
 (9) 
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In this numerical computation, several equations are used in iterations. 

K-ω is built from the two-equation model for the turbulence kinetic energy (k) 
and turbulence-specific dissipation rate (ω) base model. The equation for the 

turbulence-specific dissipation rate is [35]: 

 

 
𝜕𝜖

𝜕𝑡
 + �̅�𝑗

𝜕𝜖

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
 [(𝑣 +

𝑣𝑇

𝜎𝜖
  )

𝜕𝜖

𝜕𝑥𝑗
] = 𝐶1

𝜖

𝑘
𝑣𝑇

𝜕𝑢𝑖

𝜕𝑥𝑗
(

𝜕𝑢𝑖

𝜕𝑥𝑗
 +  

𝜕𝑢𝑗

𝜕𝑥𝑖
) − 𝐶2

𝜖2

𝑘
 

 
 (10) 

And the kinetic energy of turbulence: 

 

 
𝜕𝑘

𝜕𝑡
 + �̅�𝑗

𝜕𝑘

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
 [(𝑣𝑒𝑓𝑓 )

𝜕𝑘

𝜕𝑥𝑗
] = 𝑣𝑇

𝜕𝑢𝑖

𝜕𝑥𝑗
(

𝜕𝑢𝑖

𝜕𝑥𝑗
 +  

𝜕𝑢𝑗

𝜕𝑥𝑖
) −  𝜖 

(11) 
 

By defining the specific dissipation ω = 
𝜖

𝑘
 as the second transported 

variable, we have the k-ω model. The equation used for k is the same 

implemented for the k-ϵ model, while the equation for ω becomes: 

 

 
𝜕𝜔

𝜕𝑡
 + �̅�𝑗

𝜕𝜔

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
 [(𝑣 + α𝜔𝑣𝑇 )

𝜕𝜔

𝜕𝑥𝑗
] = α

ω

𝑘
𝑣𝑇

𝜕𝑢𝑖

𝜕𝑥𝑗
(

𝜕𝑢𝑖

𝜕𝑥𝑗
 + 

𝜕𝑢𝑗

𝜕𝑥𝑖
) −  𝛽𝜔2 

(12) 

 

The turbulence viscosity SST is obtained using [36]:  
 

 𝜈𝑡  =  
𝛼1𝑘

𝑚𝑎𝑥(𝛼1𝜔,𝑏1𝐹23)
 

(13) 

 
In isotropic turbulence, the kinetic energy of turbulence can be 

approximated by [36]: 

 

 𝑘 =  
3

2
 (𝐼|𝑢𝑟𝑒𝑓|)2 

    (14) 

 

where 𝐼 represents intensity, and 𝑢𝑟𝑒𝑓 reference velocity. The turbulence-

specific dissipation rate (𝜔) can be determined as [36]: 

 

 𝜔 =  
𝑘0.5

𝐶𝜇
0.25𝐿

 
(15) 

 

where 𝐶𝜇 is equal to 0.09 (constant) and 𝐿 as the reference length scale, the 

algorithm used is Semi-Implicit Method for Pressure-Linked Problems 
(SIMPLE) to solve model equations in OpenFOAM®. 

The boundary conditions given are "constant velocity profile" for inlet 

faces, "zero gradients" for outlet faces, and "wall (no slip)" for lower and upper 
wall faces in the 2D case. Only the front and rear faces are "empty" in 2D [36]. 
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 𝑅𝑒 = 
𝑢 𝐿

ν
 (16) 

 

where 𝜈: kinematic viscosity of a fluid (𝑣 = 𝜇/𝜌); 𝜇 : dynamic viscosity of a 

fluid; 𝜌: fluid density; 𝐿: characteristic length; 𝑢: inlet velocity (m/s) in 

temperature of air 25 ℃. 

This numerical method is used as a dataset which is carried out on 
variations in the entry velocity at the entry velocity interval, V=44.2 – 50 m/s 

with a training frequency of 0.01 m/s so that the data set obtained has a total 

of 600 datasets *.csv in the form of data reattachment length along the x-axis 
from step. 

 

 
 

Figure 5: Sample area data of BFS (blue line) 

 

 
 

Figure 6: Extracting 2-D datasets process from a line of the flow field 
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Data from numerical simulations include the coefficient of pressure, 

pressure, wall shear, and velocity in the area of 1.0 < x > -1.0 on the surface of 
the lower wall of the model, see Figure 5. The number of samples taken at each 

velocity is 3000 nodes. 

 
Long short-term memory setup 
The data obtained from the simulation results, namely the reattachment length 

(change in the value of the x-axis wall shear direction), is stored at each 
velocity increase in the simulation iteration process. Data is retrieved at 600 

different velocities and extracted with a mechanism, as shown in Figure 6.  

The data are combined in one *.csv document, which is then estimated 
by creating a model using the Neural Networks LSTM approach in subsection 

"long short-term memory networks." The estimation results are evaluated 

using Equation 8. This evaluation is a parameter of the model's feasibility to 
make estimates of the next Reynolds number. 

 

 

Results and Discussion 
 

Numerical simulation results 
According to the specific model dimensions and operational conditions, the 

validation procedure is executed by evaluating the numerical simulation results 

with the actual research data from prior research [33]. The validation step must 
confirm that the CFD software depicts the actual state appropriately. 

Based on the graph in Figure 7, the numerical data from prior research 

and numerical results from the initial setup for BFS with a modified Reynolds 
Number do not differ significantly. The disparity arises since the numerical 

simulation is conducted assuming the system conditions. Nonetheless, 

numerous numerical settings were challenging to manage. However, since both 
plots reflect the same trendline, there is no visible variation in value. 

As shown in Figure 5, the sampling area for data from the coefficient 

of pressure (Cp), pressure (p), and wall shear (Wss_x). From the simulation 
results, the data is processed to get the attachment length by measuring the step 

distance to the change in the direction of the wall shear value, which shows the 

reattachment point. Paraview is used for post-processing data to observe the 
structure as a contour graph.  

Figure 8(a) is a flowing contour depicting a velocity contour plot for 

the case at 50 m/s as a mean velocity. From the results of numerical studies, 
each cell element is produced as coordinates with velocity, pressure, pressure 

coefficient, and shear stress (wall shear stress). The reattachment distance 

value is obtained from the selection of data on changes in the direction value 
of the wall shear stress in the lower wall (sample) area [34]. 

As shown in Figure 8(b), the reattachment point occurs between the 

distances 0.07-0.08 as a sign of the limit of changes in backward and forward 
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flow. Table 4 shows the reattachment distance with the inlet condition at 44.2 

m/s, having a length of 0.07837 mm. 
 

 
(a) (b) 

 

 
(c) (d) 

 

Figure 7: Comparison between the experimental [33] and the present 

numerical value with variation range "x" from step "h" based on the setup; (a) 
1 x/h, (b) 4 x/h, (c) 6 x/h, and (d) 10 x/h 

 

While in Tables 5 and 6 show the reattachment distance with inlet-
velocity conditions of 48.2 m/s and 50.0 m/s. The result of reattachment length 

is 0.07747 mm and 0.774775 mm, respectively. This result has a slightly varied 

reattachment length value. Compared with the results of [33] with the same 
configuration, it also has a reattachment value of 6.26+-0.1 x/h or 0.0790 mm. 

This difference is due to the instability phenomenon caused by a strong adverse 

pressure gradient. An adverse pressure gradient study has been carried out by 
Driver and Seegmeler [37].  

From picking random data 44.2, 48.2, and 50.0 m/s. Observably, the 

distance of the reattachment points from the step decreases with continuing to 
increase velocity. Likewise, it can be seen in Figure 8(c), a wall shear graph 

from various velocities. From Figure 8(c), the green line is the wall shear line 

at 50 m/s as the mean velocity, which is relatively lower than the other two 
wall shears. 
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The results of each reattachment length from velocity variations are 

processed in a pre-processing stage. Processing is done by separating the 
overall data until there are only Reynolds number, velocity, and Wallshear_x 

values. The data changes as the velocity increases or the Reynolds number 

changes. 
Figure 9(a) illustrates the results of separating the reattachment length 

data for each Reynolds number or velocity variation. Due to the small 

Reynolds range, the data was insufficient because of awake vorticities and 
different Reynold numbers. 

 

 
(a)  

 
(b)  

 

 
(c)  

 
Figure 8: Numerical results of the current study; (a) freestream contour on 

Backward-Facing Step (50 m/s), (b) streamline contour on Backward-Facing 

Step (50 m/s), and (c) compared wall shear 44.2 m/s, 48.2 m/s, and 50 m/s 
 

Table 4: Results of reattachment point simulation in velocity 44.2 m/s 

 

Coor_x Cp p Wss_x 
0.0780781 -0.00306 -389.648 0.02241340 
0.0783784 -0.00214 -209.273 0.00374021 
0.0786787 -0.00124 -121.148 -0.0147147 
0.0786787 -0.00036 -0.36035 -0.0328505 
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Table 5: Results of reattachment point simulation in velocity 48.2 m/s 

 

Coor_x Cp p Wss_x 
0.0771772 -0.00208 -389.648 0.0423038 
0.0774775 -0.00101 -209.273 0.0172398 
0.0777778 -0.00009 -121.148 -0.0073336 
0.0780782 0.00100 -0.36035 -0.0318490 

 

Table 6: Results of reattachment point simulation in velocity 50.0 m/s 
 

Coor_x Cp p Wss_x 

0.0771772 -0.00306 -389.648 0.02241340 
0.0774775 -0.00214 -209.273 0.00374021 

0.0777778 -0.00124 -121.148 -0.0147147 
0.0780781 -0.00036 -0.36035 -0.0328505 

 
Long Short-Term Memory (LSTM) result 
The results of training simulations of numerical data have been sorted and 

tidied up based on variations in velocity. In this case, the data for training and 
testing is separated with a ratio of 80:20. As shown in Figure 9(b), the orange 

line represents the test data, while the line with blue colour represents the data 

used for testing. 
Data training is carried out from the model that has been created and 

modified. The "data loss" training process from every data was carried out. 

From Figure 10(a), it can be seen that the loss value continues to fall, at least 
when doing training. From the estimation results using the LSTM approach, 

the reattachment length value is obtained with a relatively more significant 

value (0.079745) than the numerical simulation results. 
Figure 10(b) shows that the orange line is described as the prediction 

line, and the blue line is numerical data. Based on that figure, the nonlinear line 

was predicted from recent data, and the result was significantly close to the 
actual data value. The neural network employed is developing a base model in 

some previous studies with satisfactory results. After performing hypertuning 

to optimize parameters such as epoch, batch, iteration, and activation function, 
select the optimal model that can be used to estimate reattachment length. As 

evaluation metrics, the model's results are evaluated with Root Mean Square 

Error (RMSE) [28] metric: 0.013.  
 

 

Conclusion 
 

This study succeeded in carrying out a numerical study approach to describe 

the fluid structure and implement ML using the LSTM method. From the 
simulation process, the data change length of the reattachment based on the 
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velocity increase is used as a dataset to estimate and reduce the iteration time 

of the numerical simulation. The estimation results using the LSTM algorithm 
resulted in reasonably good training. Reattachment length can be estimated 

with parameter data in geometric configuration and suitable conditions in this 

study. This model can estimate the reattachment length. Using the machine 
learning model, it gets the predicted reattachment length from Re 35587 - 

40422 variation with a step height of 1.27 cm. The numerical simulation 

process in modelling the flow structure is intended to optimize a system. 
Besides that, the simulation is used as data from the results of physical 

interactions. The machine learning methods can be applied by one of the 

trainings using a data processing approach to streamline time. The estimation 
process is expected to Velocity increase the process of consideration for 

optimizing the system. 

 

 
(a) 

 

 
(b) 

 

Figure 9: Results of the present numerical study and split data; (a) 

reattachment length vs. velocity, and (b) split data training and testing from 
the present setup 
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(a) 

 

 
(b) 

 

Figure 10: Results of long short-term memory; (a) Epoch vs. loss training 
process, and (b) result estimation prediction vs. simulation 
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