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ABSTRACT 

In this article, functionally graded plates’ buckling and bending analyses are 

investigated using a new shape function. The parabolic transverse shear 
stresses throughout the thickness are regarded by this function as meeting 

the shear stress-free surface conditions and enabling an accurate 

distribution of shear deformation according to the thickness of the plate 
without integrating shear correction factors. Compared to previous shear 

theories, this higher-order shear theory has the fewest unknowns. The 

equations for the functionally graded plates are produced by employing the 
Hamiltonian principle, and the solutions are obtained using Napier’s 

technique. The outcomes of the current analysis are provided and contrasted 

with those found in the literature. 
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Introduction 

Advanced composite material known as Functionally Graded Material 
(FGM) has compositions that change depending on the performance needed. 

The volume fractions of the elements are continuously graded and altered to 

create the FGM [1], which may be used for a variety of applications 
including thermal coatings for ceramic engines, gas turbines, nuclear fusion, 

optical thin layers, biomaterial electronics, and more. 
The use of Functionally Graded (FG) plate designs in engineering 

over the past few years has led to the creation of numerous plate theories that 



Ali Meftah 

106 

can accurately forecast the vibration, bending, and buckling, behaviours of 
FG plates [2]. The Classical Plate Theory (CPT) is supported by the concepts 

of Love Kirchhoff [3]. In which the effects of deformation in transverse 

shears are ignored and a line parallel to the mean plane of the plate remains 
perpendicular after deformation. To account for the transverse shear effect, 

the first-order transverse shear strain theory expands the traditional plate 

theory. In this case, the tangential stresses remain constant across the 
thickness of the plate, necessitating the employment of correction factors [4]. 

There are studies on First-Order Shear Deformation Theory (FSDT) that led 

to the Reissner - Mindlin plate model, as well as [5]-[9].  
Higher Order Shear Deformation Theory (HSDT), a subclass of finer 

theories, is based on the growth of thickness displacement to an order of two 

or more. These theories are particularly well adapted to simulate the 
behaviour of thin, moderately thick, and thick plates, where transverse strain 

is important. While the higher-order theory is predicated on a nonlinear 

distribution of the fields in the thickness, the bulk of these models use a 
Taylor series expansion [10]. The consequences of transverse shear strain 

and/or transverse normal strain are therefore considered. For these models, 

correction adjustments are not necessary. These models are mentioned in [7], 
[11]-[13].  

There has been extensive research on the behaviour of functionally 

graded plates and shells. Cheng and Batra [14] examined the deflections of a 
homogeneous Kirchhoff plate to those of a simply supported reinforced 

composite polygonal plate using calculations from first-order shear strain 

theory and third-shear deformation theory. Cheshmeh et al. [15] employed 
HSDT to carry out a numerical study on the thermal vibration and buckling 

analysis of CNTRC-composite plates in various forms. Kulkarni et al. [16] 

provided an analytical solution based on the inverse trigonometric shear 
deformation theory for the buckling and bending analysis of FGP. 

Rectangular FG plates exposed to non-linearly distributed plane edge stresses 

were examined for buckling [17]. They used a non-mesh technique for their 
analysis. Additionally, they arrived at a closed-form solution for a simply 

supported plate by investigating the buckling analysis of a rectangular FG 

plate utilizing FSDT [18].  
The bending analysis of FG plates was provided by [19] using a two-

variable improved plate theory. Bodaghi and Saidi [20] focused on the study 

of buckling caused by different mechanical and thermal loads on rectangular 
thick FG plates. The third-order shear deformation plate theory was used [21] 

to develop a new, better plaque theory for FGM plaques that only had four 

unknown functions. Becheri et al. [22] investigated the buckling and 
vibration of symmetrically laminated plates. They applied shear deformation 

theories of the first and third orders for the thermos-elastic deformation of 

simply supported, functionally graded plates with constrained dimensions, 
Pelletier and Vel [23] presented an accurate 3-D solution. For the bending 
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analysis of rectangular FG plates, Zenkour [24] displayed a 3-D elasticity 
solution, where Young's modulus of the plate is presumptively assumed to 

vary exponentially with thickness coordinate and Poisson's ratio constant. 

The buckling and bending of FG plates are discussed in this article 
using a novel shape function that is used to develop an HSDT with only four 

unknowns. The defining differential equations are then reduced to a set of 

ordinary differential equations linked in the thickness direction and resolved 
using Navier's methods for simply supported rectangular plates. Numerical 

findings for the FG plate are shown. To make the results believable, 

displacements and stresses for different homogenization procedures and 
exponents in the power law that govern the variation across the thickness of 

the plate are supplied. 

 
 

Some Shape Functions 
 
A novel shape function for shear deformation is created and shown using 

several models, which are listed in Table 1. 

 
Table 1: The shape functions of several HSDT 

 

Models 
Shear strain shape 

function  
Derivative  

Reissner et al. [5] 

  
 

Ambartsumyan [25] 
  

Soldatos [26] 
  

Touratier [27]   
Zenkour [24]                

Karama et al. [28] 
  

 

Grover et al. [29]                 
Benbakhti et al. [30] 

Meftah et al. [31]         
 

Present model       
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Theoretical Formulations 
 

Take into account an FG plate with the dimensions of a, b, and h as 

illustrated in Figure 1. The material characteristics of the FG plate vary with 
plate thickness due to a power law of the elements' volume fractions. The FG 

plate is made up of ceramic and metal parts. 

 

 
 

Figure 1: FG plate and coordinates 

 
Properties of efficient materials of FG plates 
Thai and Choi [32] denote the material qualities of FG plates. 

 

   (1) 

 
Pc and Pm are the matching material qualities of the ceramic and metal placed 

on the plate's top and bottom surfaces, respectively. The volume proportion 

of the ceramic Vc material is as follows: 
 

  (2) 

 

Here p denotes the positive power-law index and ; zirconia 

distribution along plate thickness, Elastic modulus of the FG plate is 

provided by the exponential law [24]: 
 

  (3) 

 
The homogenous Elastic modulus of materials is indicated by E0. 

 

Higher-order shear deformation theories 
At the plate's coordinates (x, y, and z), a material point has the following 

displacement field: 
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(4) 

 

With, u, v, and w the directions are moved in x, y, z, and u0, v0, and w0 
are deviations from the median plane,  owing to bending, the plane rotates. 

f(z) represents the mode shapes determining the thickness-dependent stress 

and transverse deformation distributions, in this case, I created a new shape 
function in the form:  

 

  (5) 

 
Kinematic and constitutive relations 
 

 

(6a) 

 

 

(6b) 

 

For elastic FGMs, the constitutive relations can be written as follows: 
 

  (7) 

 

where: 

                           (8a)
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      (8b) 

 

Equations of motion 
Here, the constitutive equations and the relevant motion equations for the 

displacement field are acquired using Hamilton's rule. The analytical 
formulation of the principle is as follows: 

 

  (9) 

 
: variation of the deformation energy;  : work done;  : variation of 

the kinetic energy of the FGM plate. The fluctuation of the plate's strain 

energy is determined by: 
 

   
  

 
 

 

(10) 

  
The definitions of solicitations with N, M, and Q are: 

 

  

 
(11a) 

  

 
(11b) 

 

  
(11c) 

  (11d) 

 
The transverse loads and the fluctuation of the work done in the plane 

are given by: 
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  (12) 

 

Such as: 

 

  
(13) 

 

The following factors affect how kinetic energy fluctuates: 

 

 
   

(14) 

The mass density denoted by  , the time variable t is 

differentiated using the dot-superscript convention, and ( ) are mass 

inertias. 

 

  (15) 

 

Replacing Equation (10), Equation (12), and Equation (14) into 
Equation (9) and integrating the displacement gradients by parts and setting 

the coefficients of to zero separately. The resulting 

motion equations are as follows:  

 

  
(16a) 

  
(16b) 

 

(16c) 
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(16d) 

 

The stress resultants are given by replacing Equation (6a) with 
Equation (7) and the findings there form into Equations (11a), (11b), (11c), 

and (11d). 

 

  (17) 

 

  
(18) 

 
where  are the plate’s stiffness defined by:  

 

  (19) 

 

 

(20) 

The motion equations can be expressed in the form of displacements. 

(u0, v0, w0 et φ) by substituting Equations (17 and 18) into Equation (16) as 
follows: 

 

 
 

(21a) 

 

(21b) 
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(21c) 

 

    

 

 

 

(21d) 

 

 

Analytical Solutions for the FG Plate 
 

The displacement variables are written as a combination of arbitrary 
parameters and well-known trigonometric functions to ensure that the motion 

formulas and boundary conditions are respected. The Navier solution method 

is used for this. 
 

  (22) 

 

  

 

(23) 

 

The double Fourier sinus series expands the transverse force q as well:  

 
  (24) 

 
and  are natural numbers, a and b are the dimensions of the plate 

according to the x and y axes, correspondingly,  for a load with a 
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sinusoidal distribution. Taking into account that the plate is experiencing a 
compressive load in its plane: 

 

 ,  

 

is a non-dimensional load parameter. Substituting Equation (22) into 

Equation (21), it’s discovered the problem: 

  

 

(25) 

 
where: 

 

 

 
 

 

 
 

 
 

 

 

 
 

 
 

(26) 

Numerical example 
We study a rectangular, simply supported FG plate with dimensions a and b, 

located, respectively, in the x- and y-axes (see Figure 1). In Table 2, the 
material qualities are listed. 
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Table 2: Qualities of plate materials 

 

Material 
Young’s 

modulus (GPa) 

Mass density 

 (kg/m3) 

Poisson’s 

ratio 

Aluminium (Al) 70 2.702 0.3 

Alumina (Al2O3) 380 3.800 0.3 

Zirconia (ZrO2) 151 3.000 0.3 

Silicon carbide (SiC) 420 3.210 0.3 

 
The accuracy of the current analysis is examined in the section that 

follows, which also examines the effects of the geometric ratio and the 

power-law index on the deflections, stresses, and critical buckling loads of 
FG plates. The following dimensionless parameters are chosen because they 

are more practical: 

 

  (27) 

 

 
 

  

(28) 

 

  
(29) 

 

Bending analysis 
To check the accuracy of the proposed model in investigating the bending, 

Tables 3 (square plates, h/a=0.1) and 4 determine the central deflections, 
transverse shear stresses, and normal stresses of plates (Al/Al2O3) under 

sinusoidal loads. The outcomes of several shear deformation theories were 

compared, including quasi-3D, 3D, sinusoidal shear deformation theory 
(SSDT), third-order shear deformation theory (TSDT), and those that took 

into account both transverse shear and normal stresses. It can be seen from 

these results that the computations based on the present 2D (HSDT) theory 
present an excellent agreement with those predicted by the other theories of 

TSDT [33] and HSDT [34] and present a good correlation with those 

predicted by Quasi-3D [35], Quasi-3D [36], SSDT [37], and HSDT [38]. 
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Table 3: Dimensionless (  of square plates (Al/Al2O3) 

 

p Theory 
     

1 Quasi-3D [35] 0.6436 0.5875 1.5062 0.6081 0.2510 

Quasi-3D [36] 0.6436 0.5876 1.5061 0.6112 0.2511 

SSDT [37] 0.6626 0.5889 1.4894 0.6110 0.2622 

HSDT [38] 0.6398 0.5880 1.4888 0.6109 0.2566 

TSDT [33] 0.6414 0.5890 1.4898 0.6111 0.2599 

HSDT [34] 0.6414 0.5891 1.4898 0.6111 0.2608 

HSDT [39] 0.6401 0.5883 1.4892 0.6110 0.2552 

Present 0.6414 0.5890 1.4898 0.6111 0.2608 

2 Quasi-3D [35] 0.9012 0.7570 1.4147 0.5421 0.2496 

Quasi-3D [36] 0.9013 0.7571 1.4133 0.5436 0.2495 

SSDT [37] 0.9281 0.7573 1.3954 0.5441 0.2763 

HSDT [38] 0.8957 0.7564 1.3940 0.5438 0.2741 

TSDT [33] 0.8984 0.7573 1.3960 0.5442 0.2721 

HSDT [34] 0.8984 0.7573 1.3960 0.5442 0.2721 

HSDT [39] 0.8961 0.7567 1.3947 0.5439 0.2721 

Present 0.8984 0.7573 1.3960 0.5442 0.2737 

4 Quasi-3D [35] 1.0541 0.8823 1.1985 0.5666 0.2362 

Quasi-3D [36] 1.0541 0.8823 1.1841 0.5671 0.2362 

SSDT [37] 1.0941 0.8819 1.1783 0.5667 0.2580 

HSDT [38] 1.0457 0.8814 1.1755 0.5662 0.2623 

TSDT [33] 1.0502 0.8815 1.1794 0.5669 0.2519 

HSDT [34] 1.0502 0.8815 1.1794 0.5669 0.2537 

HSDT [39] 1.0466 0.8818 1.1766 0.5664 0.2593 

Present 1.0502 0.8815 1.1794 0.5669 0.2537 

8 Quasi-3D [35] 1.0830 0.9739 0.9687 0.5879 0.2262 

Quasi-3D [36] 1.0830 0.9739 0.9687 0.5879 0.2261 

SSDT [37] 1.1340 0.9750 0.9466 0.5856 0.2121 

HSDT [38] 1.0709 0.9737 0.9431 0.5850 0.2140 

TSDT [33] 1.0763 0.9747 0.9477 0.5858 0.2087 

HSDT [34] 1.0763 0.9746 0.9477 0.5858 0.2088 

HSDT [39] 1.0719 0.9744 0.9444 0.5852 0.2117 

Present 1.0763 0.9746 0.9477 0.5858 0.2088 

 

The variations in-plane displacement, normal and tangential stresses 

across the thickness of the square plate (Al /Al2O3) are shown in Figure 2. It 
can be seen that the lower part of the plate is in tension and the upper part. In 

compression, the dimensionless displacement increased with the increase in 

the power index, and was equal to zero, for (z/h= 0). 
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Table 4: Dimensionless deflection ( ) of plates (Al/Al2O3) 

 

h/a a/b Theory 
p   

0.1 0.3 0.5 0.7 1 1.5 

0.5 1 3D [24] 0.576
9 

0.524
7 

0.476
6 

0.432
4 

0.372
7 

0.289
0 Quasi-3D 

[40] 
0.573

1 
0.518

1 
0.467

9 
0.422

2 
0.361

2 
0.277

1 Quasi-3D 

[41] 

0.577

6 

0.522

2 

0.471

6 

0.425

5 

0.364

0 

0.279

2 HSDT [38] 0.636

3 

0.575

2 

0.519

5 

0.468

7 

0.401

8 

0.307

9 HSDT [34] 0.636

2 

0.575

1 

0.519

4 

0.468

7 

0.401

1 

0.307

9 HSDT [39] 0.621

1 

0.561

5 

0.507

3 

0.457

9 

0.392

1 

0.301

4 Present 0.619
6 

0.575
0 

0.519
0 

0.468
0 

0.399
8 

0.305
5 0.5 3D [24] 1.194

4 

1.085

9 

0.986

4 

0.895

2 

0.772

7 

0.601

7 Quasi-3D 

[40] 

1.188

0 

1.074

0 

0.970

1 

0.875

5 

0.749

4 

0.575

8 Quasi-3D 

[41] 

1.193

8 

1.079

0 

0.974

8 

0.879

7 

0.753

0 

0.578

5 HSDT [38] 1.277

6 

1.155

3 

1.044

1 

0.943

1 

0.809

3 

0.623

8 HSDT [34] 1.277
5 

1.155
3 

1.044
1 

0.943
1 

0.808
6 

0.623
8 HSDT [39] 1.256

9 

1.136

7 

1.027

5 

0.928

4 

0.796

5 

0.615

3 Present 1.256

7 

1.155

1 

1.043

6 

0.942

2 

0.807

1 

0.621

0 0.3

3 

3D [24] 1.443

0 

1.311

6 

1.191

3 

1.081

2 

0.933

4 

0.727

5 Quasi-3D 

[40] 

1.435

4 

1.297

7 

1.172

2 

1.058

0 

0.905

7 

0.696

2 Quasi-3D 
[41] 

1.441
9 

1.303
5 

1.177
4 

1.062
6 

0.909
6 

0.699
1 HSDT [38] 1.534

1 

1.387

4 

1.254

0 

1.132

9 

0.972

5 

0.750

6 HSDT [34] 1.534

0 

1.387

3 

1.254

0 

1.132

9 

0.971

9 

0.750

6 HSDT [39] 1.511

5 

1.367

1 

1.236

0 

1.116

9 

0.958

7 

0.741

4 Present 1.510

1 

1.387

2 

1.253

7 

1.132

4 

0.971

0 

0.749

0 0.2
5 

1 3D [24] 0.349
0 

0.316
8 

0.287
5 

0.260
8 

0.225
3 

0.180
5 Quasi-3D 

[40] 

0.347

5 

0.314

2 

0.283

9 

0.256

3 

0.219

6 

0.169

2 Quasi-3D 

[41] 

0.348

6 

0.315

2 

0.284

8 

0.257

1 

0.220

3 

0.169

7 HSDT [38] 0.360

2 

0.325

9 

0.294

9 

0.266

8 

0.229

5 

0.178

5 HSDT [34] 0.360

2 

0.325

9 

0.294

9 

0.266

8 

0.229

5 

0.178

5 HSDT [39] 0.357
5 

0.323
5 

0.292
7 

0.264
9 

0.228
0 

0.177
5 Present 0.359

1 

0.326

0 

0.295

2 

0.267

3 

0.230

5 

0.180

3 0.5 3D [24] 0.815

3 

0.739

5 

0.670

8 

0.608

5 

0.525

7 

0.412

0 Quasi-3D 

[40] 

0.812

0 

0.734

3 

0.663

5 

0.599

2 

0.513

6 

0.396

2 Quasi-3D 

[41] 

0.814

5 

0.736

5 

0.665

5 

0.600

9 

0.515

1 

0.397

3 HSDT [38] 0.832
5 

0.753
4 

0.681
9 

0.617
3 

0.531
9 

0.415
0 HSDT [34] 0.832

5 

0.753

4 

0.681

9 

0.617

3 

0.531

9 

0.415

0 HSDT [39] 0.828

5 

0.749

8 

0.678

7 

0.614

5 

0.529

6 

0.413

5 Present 0.831

1 

0.753

3 

0.681

7 

0.617

0 

0.531

2 

0.413

9 0.3

3 

3D [24] 1.013

4 

0.919

0 

0.833

5 

0.756

1 

0.653

3 

0.512

1 Quasi-3D 
[40] 

1.009
4 

0.912
7 

0.824
8 

0.744
9 

0.638
5 

0.492
7 Quasi-3D 

[41] 

1.012

4 

0.915

5 

0.827

2 

0.747

0 

0.640

4 

0.494

1 HSDT [38] 1.032

5 

0.934

5 

0.845

9 

0.765

9 

0.660

1 

0.515

4   
HSDT [34] 1.032

5 

0.934

5 

0.845

9 

0.765

9 

0.660

1 

0.515

4 HSDT [39] 1.028

1 

0.930

5 

0.842

4 

0.762

8 

0.657

6 

0.513

7 Present 1.031
0 

0.934
4 

0.845
8 

0.765
7 

0.659
6 

0.514
6  

Concerning the greatest axial tension rises as the power index p 

whereas it appears minimal compressed stresses positioned at the lower part 
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of the plate intended certain values of p (p=0, and p=0.5, 

) the axial stress is in tension in the upper part (p=0,  

and p=40, ). 

 

  

Figure 2: In-plane displacement ( ) and stress ( )along the thickness of 

Al/Al2O3 square plates (h/a=0.1) 

 
Figure 3 displays the change in tangential cross-thickness stresses on 

the FG plate, for homogeneous plates, the mid-plane is where the highest 

shear stress is located, and it tends to migrate slightly to the top surface, this 
is an asymmetric characteristic of the FGM through the thickness of the FG 

plate. 

 

  
 

Figure 3: In-plane stress ( ) and ( ) long the thickness of Al/Al2O3 

square plates (h/a=0.5) 

 
Buckling analysis 
Calculated critical buckling loads and compared them to those accessible in 

the literature to assess the efficacy of the current results in forecasting a 



Bending and Buckling Analysis  

119 

buckling response of FG plates. The following example investigates the 
buckling reactions of Al/Al2O3 and Al/SiC plates under three different types 

of in-plane loads: uniaxial compression, biaxial compressions, axial 

compression, and tension (γ=0), (γ=1), and (γ=-1), respectively. Because of 
differences in material characteristics over the thickness, stretching-bending 

coupling arises in FG plates. 

 

Table 5: The critical buckling load cr) of Al/SiC square plates (h/a=0.1) 

 

 

Theory 
p 

0 0.5 1 2 5 10 

0 HSDT [39] 37.4215 37.6650 37.7560 37.6327 36.8862 36.5934 

FSDT [42] 37.3708 -  37.7132 37.7089  - -  
HSDT [20] 37.3714 -  37.7172 37.5765  - - 

HSDT [43] 37.3721 -  37.7143 37.6042  -  - 

Present 37.3721 37.6302 37.7143 37.6042 36.9183 36.5615 
1 HSDT [39] 18.7107 18.8325 18.8780 18.8163 18.4431 18.2967 

FSDT [42] 18.6854 -  18.8566 18.8545 -  -  

HSDT [20] 18.6860 -  18.8571 18.8020 -  -  
HSDT [43] 18.6861 -  18.8572 18.8021 -   - 

Present 18.6861 18.8151 18.8572 18.8021 18.4591 18.2807 

-1 HSDT [39] 72.3281 73.4526 73.8426 73.2827 69.9876 68.7244 
FSDT [42] 72.0834 -  73.6307 73.6112 - - 

HSDT [20] 72.2275 -  73.6645 73.1587 - - 

HSDT [43] 72.0983 -  73.6437 73.1436 - - 
Present 72.0983 73.5127 74.2938 74.2403 71.0104 69.0775 

 

When the plate is subjected to in-plane compressive loads, this 

coupling induces deflection and bending moments. 
The results of Table 5 present the critical buckling load of a simply 

supported square plate (Al/SiC) with a constant geometric ratio (h/a=0.1). 

The outcomes are contrasted with those. of the HSDT [39], FSDT [42], 
HSDT [20], and HSDT [43]. The computed results have good accuracy for 

square plates. 

To further illustrate the accuracy of the present theory for a wide 
range of thickness ratio (a/h), geometric ratio (b/a), different values of 

gradient index (p), and different cases of the dimensionless load parameter  

(  ), comparison of the variations of critical buckling load ( cr) of Al/Al2O3 

plates computed by the present theory, HSDT [43] and HSDT [39] is 

presented in Table 6, as seen in the table, there is a good agreement between 

the computed results from the proposed theory and the computed results from 
other HSDT. 
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Table 6: The critical buckling load ( cr) of Al/Al2O3 plates 

 

 

b/a h/a Theory 
p 

0 0.5 1 2 5 10 

0 2 0.2 HSDT[43] 6.7203 4.4235 3.4164 2.6451 2.1484 1.9213 

HSDT[39] 6.7417 4.4343 3.4257 2.6503 2.1459 1.9260 

Present 6.7203 4.4235 3.4164 2.6451 2.1484 1.9213 
0.1 HSDT[43] 7.4053 4.8206 3.7111 2.8897 2.4165 2.1896 

HSDT[39] 7.4115 4.8225 3.7137 2.8911 2.4155 2.1911 

Present 7.4053 4.8206 3.7111 2.8897 2.4165 2.1896 
0.05 HSDT[43] 7.5993 4.9315 3.7930 2.9382 2.4944 2.2690 

HSDT[39] 7.6009 4.9307 3.7937 2.9585 2.4942 2.2695 

Present 7.5993 4.9315 3.7930 2.9582 2.4944 2.2690 

1 0.2 HSDT[43] 16.0211 10.6254 8.2245 6.3432 5.0531 4.4807 
HSDT[39] 16.1003 10.6670 8.2597 6.3631 5.0459 4.4981 

Present 16.0211 10.4629 7.9086 5.94263 4.7928 4.355 

0.1 HSDT[43] 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528 
HSDT[39] 18.6030 12.1317 9.3496 7.2687 6.0316 5.4587 

Present 18.5785 11.9128 8.9338 6.7404 5.6678 5.2707 

0.05 HSDT[43] 19.3528 12.5668 9.6675 7.5371 6.3448 5.7668 
HSDT[39] 19.3593 1.25652 9.6702 7.5386 6.3437 5.7689 

Present 19.3528 12.3413 9.2339 6.9752 5.9399 5.5643 

1 2 0.2 HSDT[43] 5.3762 3.5388 2.7331 2.1161 1.7187 1.5370 
HSDT[39] 5.3934 3.5475 2.7406 2.1202 1.7167 1.5408 

Present 5.3762 3.5388 2.7331 2.1161 1.7187 1.5370 

0.1 HSDT[43] 5.9243 3.8565 2.7689 2.3117 1.9332 1.7517 
HSDT[39] 5.9292 3.8580 2.9710 2.3129 1.9324 1.7529 

Present 5.9243 3.8565 2.9689 2.3117 1.9332 1.7517   
0.05 HSDT[43] 6.0794 3.9452 3.0344 2.3665 1.9955 1.8152 

HSDT[39] 6.0807 3.9445 3.0350 2.3668 1.9953 1.8156 

Present 6.0794 3.9452 3.0344 2.3665 1.9955 1.8152 

 

1 0.2 HSDT[43] 8.0105 5.3127 4.1122 3.1716 2.5265 2.2403 
HSDT[39] 8.0501 5.3335 4.1299 3.1815 2.5230 2.2491 

Present 8.0105 5.2314 3.9543 2.9713 2.3964 2.1775 

0.1 HSDT[43] 9.2893 6.0615 .46696 3.6315 3.0177 2.7264 
HSDT[39] 9.3015 6.0659 4.6748 3.6344 3.0158 2.7293 

Present 9.2893 5.9564 4.4669 3.3702 2.8339 2.6354 

0.05 HSDT[43] 9.6764 6.2834 4.8337 3.7686 3.1724 2.8834 
HSDT[39] 9.6796 6.2826 4.8351 3.7693 3.1718 2.8844 

Present 9.6764 6.1706 4.6169 3.4876 2.9699 2.7821 

-1 2 0.2 HSDT[43] 8.9604 5.8980 4.5551 3.5268 2.8646 2.5617 
HSDT[39] 8.9890 5.9124 4.5676 3.5337 2.8612 2.5679 

Present 8.9604 5.8980 4.5551 3.5268 2.8646 2.5617 

0.1 HSDT[43] 9.8738 6.4275 4.9481 3.8529 3.2219 2.9195 



Bending and Buckling Analysis  

121 

HSDT[39] 9.8820 6.4299 4.9516 3.8548 3.2206 2.9214 
Present 9.8738 6.4275 4.9481 3.8529 3.2219 2.9195 

0.05 HSDT[43] 10.1324 6.5753 5.0574 3.9442 3.3259 3.0253 

HSDT[39] 10.1345 6.5742 5.0583 3.9447 3.3255 3.0260 
Present 10.1324 6.5753 5.0574 3.9442 3.3259 3.0253 

1 0.2 HSDT[43] 26.2058 17.7704 13.8486 10.5589 16.9590 6.8970 

HSDT[39] 24.4999 17.9424 13.9872 10.6421 7.9571 6.9626 
Presenta 26.2058 17.7947 13.8958 10.6164 7.9927 6.9132 

0.1 HSDT[43] 35.8416 23.5920 18.2206 14.1073 11.4583 10.2468 

HSDT[39] 35.9559 23.6497 18.2704 14.1349 11.4447 10.2717 
Presenta 35.8416 23.6343 18.3023 14.2113 11.5283 10.2812 

0.05 HSDT[43] 39.4951 25.7100 19.7925 15.4115 12.8878 11.6779 

 HSDT[39] 39.5280 25.7197 19.8065 15.4190 12.8824 11.6857 
Presenta 39.4951 25.7602 19.8890 15.5361 12.9764 11.7220 

a Critical buckling  

 

In Figure 6(a), the buckling responses of the Al/Al2O3 plate, are 
studied for three types of loads in the plane considered: (ɣ=0), (ɣ=-1), and 

(ɣ=1). For the three cases, for the power-law index (P=0) the essential 

buckling load, in terms of value ( cr) is maximum, then with the increase in 

(p) will decrease the critical load ( cr).  

A variety of thickness to the ratio (a /h), varying gradient index values 
(p), and for (ɣ=1), the value of the critical buckling load ( cr) is maximum 

for (p=0), then after certain values of (a/h), the curves remain flat, as plotted 

in Figure 6(b). 
 

  
 

Figure 6: The critical buckling load ( cr) of rectangular plates (Al/Al2O3) 

(b/a=2) is affected by the power-law index p and side-to-thickness ratio 

(a=0.9h) 
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Conclusion 
 

The current study uses a novel 2D HSDT to analyse the buckling and 

bending of simply supported FG plates. By developing a new shear 
deformation shape function, the theory is constructed. Hamilton's rule is used 

to generate equations describing motion. Navier’s technique is used to 

resolve these equations. The results were compared to those given by several 
plate theories for the novel shear deformation shape function employed in 

this work. As a consequence, when compared to the FSDT and other HSDTs 

with a greater number of unknowns, the created HSDT delivers findings with 
extremely good accuracy. As a result, the current model may be used as a 

benchmark to evaluate the effectiveness of approximative numerical 

methods.  
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Appendix 
 

The program  Maple  calculates dimensionless deflection (W bar) of plates 

(Al/Al2O3) 
restart; 

with(linalg); 

pi:=evalf(Pi); 
omega:=0; 

t:=0; 

h:=1; 
m:=1; 

n:=1; 

a:=2*h; 
Ec:=380; 
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Em:=70; 
rhoc:=3800; 

rhom:=2702; 

p:=0.1; 
b:=a; 

qmn:=q0; 

lambda:=m*pi/a; 
beta:=n*pi/b; 

nu:=0.3; 

E(z):=Ec*exp(p*(z/h+0.5));rho(z):=rhoc*exp(p*(z/h+0.5)); 
C11:=E(z)/(1-nu^2);C22:=C11;C12:=nu*C11;C44:=E(z)/(2*(1+nu)); 

C55:=C44;C66:=C44; 

f(z):=(2^5)*h*((z/((2^5)*h))-(1/3)*(z/(2*h))^3);g(z):=diff(f 
(z),z); 

II:=int(rho(z),z=-h/2..h/2); 

I1:=evalf(int(rho(z)*z,z=-h/2..h/2)); 
I2:=evalf(int(rho(z)*z^2,z=-h/2..h/2)); 

J1:=evalf(int(rho(z)*f(z),z=-h/2..h/2)); 

J2:=evalf(int(rho(z)*z*f(z),z=-h/2..h/2)); 
K2:=evalf(int(rho(z)*(f(z))^2,z=-h/2..h/2)); 

A11:=int(C11,z=-h/2..h/2); 

A22:=int(C22,z=-h/2..h/2); 
A12:=int(C12,z=-h/2..h/2); 

A66:=int(C66,z=-h/2..h/2); 

B11:=int(C11*z,z=-h/2..h/2); 
B22:=int(C22*z,z=-h/2..h/2); 

B12:=int(C12*z,z=-h/2..h/2); 

B66:=int(C66*z,z=-h/2..h/2); 
D11:=int(C11*z^2,z=-h/2..h/2); 

D22:=int(C22*z^2,z=-h/2..h/2); 

D12:=int(C12*z^2,z=-h/2..h/2); 
D66:=int(C66*z^2,z=-h/2..h/2); 

Bs11:=evalf(int(C11*f(z),z=-h/2..h/2)); 

Bs22:=evalf(int(C22*f(z),z=-h/2..h/2)); 
Bs12:=evalf(int(C12*f(z),z=-h/2..h/2)); 

Bs66:=evalf(int(C66*f(z),z=-h/2..h/2)); 

Ds11:=evalf(int(C11*z*f(z),z=-h/2..h/2)); 
Ds22:=evalf(int(C22*z*f(z),z=-h/2..h/2)); 

Ds12:=evalf(int(C12*z*f(z),z=-h/2..h/2)); 

Ds66:=evalf(int(C66*z*f(z),z=-h/2..h/2)); 
Hs11:=evalf(int(C11*(f(z))^2,z=-h/2..h/2)); 

Hs22:=evalf(int(C22*(f(z))^2,z=-h/2..h/2)); 

Hs12:=evalf(int(C12*(f(z))^2,z=-h/2..h/2)); 
Hs66:=evalf(int(C66*(f(z))^2,z=-h/2..h/2)); 
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As44:=evalf(int(C44*(g(z))^2,z=-h/2..h/2)); 
As55:=evalf(int(C55*(g(z))^2,z=-h/2..h/2)); 

lambda:=m*pi/a; 

mu:=n*pi/b; 
k11:=A11*(lambda)^2+A66*(mu)^2; 

k12:=(A12+A66)*lambda*mu; 

k13:=-B11*(lambda)^3-(B12+2*B66)*lambda*(mu)^2; 
k14:=evalf(-Bs11*(lambda)^3-(Bs12+2*Bs66)*lambda*(mu)^2); 

k22:=A66*(lambda)^2+A22*mu*(lambda)^2; 

k23:=-B22*(mu)^3-(B12+2*B66)*mu*(lambda)^2; 
k24:=evalf(-Bs22*(mu)^3-(Bs12+2*Bs66)*mu*(lambda)^2); 

k33:=D11*(lambda)^4+2*(D12+2*D66)*(mu)^2*(lambda)^2+D22*(mu)^4; 

k34:=evalf(Ds11*(lambda)^4+2*(Ds12+2*Ds66)*(mu)^2*(lambda)^2+ 
Ds22*(mu)^4); 

k44:=Hs11*(lambda)^4+2*(Hs12+2*Hs66)*(mu)^2*(lambda)^2+Hs22* 

(mu)^4+As55*(lambda)^2+As44*(mu)^2; 
m11:=II; 

m22:=m11; 

m12:=0; 
m13:=-lambda*I1; 

m14:=-lambda*J1; 

m23:=-mu*I1; 
m24:=-mu*J1; 

m33:=II+I2*((lambda)^2+(mu)^2); 

m34:=J2*((lambda)^2+(mu)^2); 
m44:=K2*((lambda)^2+(mu)^2); 

R:=Matrix([[ k11 , k12 , k13 , k14 ], 

[ k12 , k22 , k23 , k24 ], 
[ k13 ,k23 ,k33 , k34 ], 

[ k14, k24 , k34 , k44 ]]); 

M:=Matrix([[ m11 , m12 ,m13 , m14 ], 
[ m12 , m22 , m23 ,m24 ], 

[m13 , m23 , m33 , m34 ], 

[ m14 , m24 , m34 , m44 ]]); 
X:=R-(omega)^2*M; 

q:=Vector[column]([ 0 , 0 ,qmn , 0 ]); 

sol:=linsolve(X,q); 
umn:=sol[1]; 

vmn:=sol[2]; 

xmn:=sol[3]; 
ymn:=sol[4]; 

x:=a/2;y:=b/2; 

u0:=umn*cos(lambda*x)*sin(mu*y)*exp(i*omega*t); 
v0:=vmn*sin(lambda*x)*cos(mu*y)*exp(i*omega*t); 
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w0:=xmn*sin(lambda*x)*sin(mu*y)*exp(i*omega*t); 
phi0:=ymn*sin(lambda*x)*sin(mu*y)*exp(i*omega*t); 

w:=w0; 

W (bar):=(10*Ec*(h)^(3)*w)/((q0*(a)^(4))); 
 

 




