
Journal of Mechanical Engineering Vol SI 11(1), 347-366, 2022 
 

___________________ 

ISSN 1823-5514, eISSN 2550-164X 
© 2022 College of Engineering, 

Universiti Teknologi MARA (UiTM), Malaysia. 

 

Received for review: 2022-07-29 
Accepted for publication: 2022-10-07 

Published: 2022-11-15 
https://doi.org/10.24191/jmeche.v11i1.23614 

Neural Network Modelling of 
Phenolic Content, Antioxidant 

Capacity and Microbial Population 
Dynamics of a Household Scale 
Spontaneous Fermentation of 

Carica Papaya Leaf 
 

 

Nor Afiqah Latip 

Centre for Chemical Engineering Studies, College of Engineering,  

Universiti Teknologi MARA, 13500 Permatang Pauh,  

Pulau Pinang, Malaysia 

 

Mohamad Sufian So’aib*, Huey Ling Tan 

Bioreactor and Bioengineering Research Initiative Group,  

School of Chemical Engineering, College of Engineering,  

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia 
*sufian5129@uitm.edu.my 

 

Syahrul Fithry Senin 

Centre for Civil Engineering Studies, College of Engineering, 

Universiti Teknologi MARA, 13500 Permatang Pauh,  

Pulau Pinang, Malaysia 

 

Aminuddin Hamid 

Centre for Mechanical Engineering Studies, College of Engineering, 

Universiti Teknologi MARA, 13500 Permatang Pauh,  

Pulau Pinang, Malaysia 

 

  

ABSTRACT 

 

Beneficial effects of spontaneous fermentation on Carica papaya leaf (CPL) 

have been observed in terms of enhanced total phenolic content and 

antioxidant capacity, as well as cultivation of lactic acid bacteria (LAB). 

Nonetheless, these responses were nonlinear, thus Artificial Neural network 

(ANN) was used as a predictive tool. The chosen ANN architecture consisted 

of multi-layer perceptron (MLP) with 2-7-7-1 and 2-10-10-1 topologies, 
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Levenberg-Marquardt training algorithm, and hyperbolic tangent sigmoid 

activation function. Enhanced total phenolic content (TPC) and antioxidant 

capacity were recorded in final CPL extracts (day 90) of 5-L fermenter origin; 

48.42±0.31 mg GAE/g dm and 467.38±4.09 mM TE/g dm, respectively, as 

compared to 12.13±0.39 mg GAE/g dm and 275.46±3.09 dm of respective 

extracts at initial (day 0). Likewise, enhanced total phenolic content (TPC) and 

antioxidant capacity were also observed for 50-L fermenter origin extracts. 

The chosen ANN topologies displayed the highest predictive ability as 

indicated by their correlation coefficient (R) of greater than 0.9, the marginal 

difference in mean square error (MSE) between training and testing data sets, 

and the absolute average deviation (AAD) of less than 10% between the 

predicted and experimental values of most responses. In conclusion, ANN was 

a reliable predictive tool for nonlinear responses during spontaneous 

fermentation of CPL. 

 

Keywords: Carica Papaya Leaf; Actic Acid Bacteria; Artificial Neural 

Network; Antioxidant Capacity; Total Phenolic Content 

 

 

Introduction 
 

Carica papaya leaf (CPL) is a medicinal herb used in folklore medicine to treat 

the wound, burn, infections, and fever. Recent studies demonstrated the CPL 

potency in treating myriad illnesses; type-2 diabetes, cancer, autoimmune 

disorder, inflammation. In tropical regions where dengue epidemic affects 500 

million, CPL is well known for its anti-dengue potency, as clinical evidence 

linked CPL to increased platelet production [1].  

The medicinal properties of CPL are contributed by its polyphenol 

compounds such as ferulic acid, caffeic acid, rutin, quercetin, protocatechuic 

acid, and kaempferol. Though bioactive, these compounds are large polymer 

molecules which are not easily absorbed by human’s digestive system in their 

native form, except for a very small fraction of them (5-10%) [2]. However, 

the digestion of most dietary polyphenols (90-95%) takes place at the colon by 

colonic microbiota. The metabolism of these polyphenols at the colon in 

anaerobic condition is akin to anaerobic fermentation [2]. Thus, various 

fermentation techniques such as spontaneous fermentation have been applied 

on phenolic-rich medicinal plants such as spider flower (Gynandropsis 

gynandra) [3], leek [4], carrot juice [5], garlic [6] and cornelian cherry [7] to 

break down these complex polyphenols, hence increasing the bioactivities of 

the original plant materials. In other instances, starter culture fermentation 

using a particular microorganism strain was also used such as Enterococcus 

faecalis and Aspergillus oryze on papaya fruit [8]. Various strains of LAB were 

also employed as starter culture during fermentation of Myrus communis 

berries [9], cactus pear (Opuntia ficus-indica L.) [10] and Echinacea spp [11]. 
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Given the benefit of fermentation in improving the bioactivity of 

various plants, Penawar Farm (location: 3.009945, 101.710782) has 

implemented a household scale of spontaneous fermentation on CPL. In 

addition, industrial scale CPL fermentation has been simulated on Medic IG 

Biopharma company (location: 3.047676274602906, 101.5306561107789) by 

our previous work [12]. By imitating the exact fermentation process setup by 

Penawar Farm in our laboratory, our recent studies revealed the enhanced 

phenolic content and antioxidant capacity of the fermented CPL, as well as 

population dynamics and identities of the microorganism in the ecosystem of 

the CPL fermentation, which consisted of LAB, enterobacteria and yeasts [13].   

Nevertheless, these fermentation process responses displayed a 

nonlinear pattern, as often the case in many biological processes. Thus, a 

reliable empirical modelling tool is imperative to characterize these nonlinear 

process responses. Meanwhile, the artificial neural network (ANN) is an 

increasingly known as the common tool in microbiology and bioprocessing to 

model highly unpredictable and nonlinear process responses. ANN is a 

supervised learning tool that recognized the complex pattern of input-output 

relationship of empirical or historical data, and later makes an intelligent 

generalization based on the experience learned during its training with the 

experimental data. This learning capability of the ANN allows the optimization 

and prediction of various process responses e.g., growth, yield, aging time, 

which are normally encountered during complex biological processes [14]-

[15]. ANN was also employed to predict the effect of extraction conditions on 

total phenolic compounds (TPC), anthocyanin (ANT) and antioxidant activity 

(AOA) of beetroot [16] and strawberries [17]. It is also more advantageous 

than the other tools e.g., response surface method (RSM), since input-output 

relationship can be established by exploiting the mathematical models even 

without prior information of the physical relationship between them [18]. Such 

capability renders ANN as a reliable tool to model the process responses during 

spontaneous fermentation of CPL. 

In this study, ANN was used to model various process responses within 

the experimental constraints (volume and duration) of spontaneous 

fermentation of CPL (initially developed by the Penawar Farm). The 

robustness of the selected ANN models was evaluated in terms of the 

correlation coefficient (R), mean square error (MSE), and the absolute average 

deviation (AAD). 

 

 

Methodology 
 

Fermentation 
About 500 g of fresh CPL was washed, shredded into small pieces and loaded 

into 5-L fermenter. Later, about 10 %w/v of brown sugar was added into the 

fermenter, followed by addition of purified water to make up a 5-L working 
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volume. The lid of the fermented was closed airtight, followed by 100-day 

incubation. A simple, one-way gas channel was created to vent off 

accumulating gas. No other control measures were implemented. Sampling 

was carried out at different intervals during the incubation; day 0, 2, 4, 6, 8, 

15, 30, 30, 45, 60, 75, 90 and 100. The 100-day period was purposely chosen 

to allow growth succession of different microorganisms. The exact 

fermentation method was replicated in 50-L fermenter with 5 kg CPL was 

used. 

 

Total phenol content and antioxidant capacity 
For the measurement of total phenolic content and antioxidant capacity, 15 mL 

of fermented CPL suspension was collected at the aforementioned intervals. 

Solid debris was first removed by centrifuging the suspension at 10,000 g for 

20 min at 4 °C, followed by dewatering using a rotary evaporator at 30 °C for 

45 min. The concentrated sample was later re-suspended in 80% of methanol 

(MeOH) at 1:1 (v/v) to yield methanolic extract (ME).  

For the construction of standard curve, exactly 1 %w/v (10 mg/100 mL) 

of standard gallic acid (Sigma-Aldrich) in 50% MeOH was prepared as stock 

assay and further diluted into appropriate working concentrations. Then, the 

assays were incubated at room temperature for 5 min, followed by the addition 

of 4 mL of 20% w/v Na2CO3 (Sigma-Aldrich). The absorbance value was 

measured at 765 nm using a UV-vis spectrophotometer (Shimadzu) against 

blank (distilled water) [19]. Similarly, ME was dissolved in 50% MeOH and 

its absorbance was taken. All readings were done in triplicate and calculated 

as average±standard deviation. Total phenolic content (TPC) of the assay was 

expressed as mg gallic acid equivalent per ME dry mass (mg GAE/g dm) using 

the following formula, i.e.: 

 

          W

DVC
TPC


=

                  (1) 

 

where C is the concentration of gallic acid (mg/mL), V is volume of extract 

solution (mL) and W is mass of dried ME (g). 

The antioxidant activity was estimated based on the scavenging activity 

of ME against DPPH (Sigma-Aldrich) as a free radical model. A standard 

calibration curve was prepared by diluting 0.05 %w/v of Trolox solution in 

MeOH as an antioxidant reference into appropriate working concentrations. 

For the DPPH scavenging assay, 0.15 mL of each Trolox assay was mixed 

with 2.85 ml of DPPH assay. The reaction of Trolox and DPPH was allowed 

for 24 hr of incubation under darkness followed by absorbance reading at 515 

nm using UV-vis spectrophotometer. Similarly, ME was dissolved in MeOH 

and its absorbance was measured. All readings were done in triplicate and 

calculated as average±standard deviation. DPPH scavenging activity was 
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expressed as µM Trolox equivalent (TE) per g of dried ME dry mass (mM 

TE/g dm) using the following formula: 

 

W

DVC
TE


=

             (2) 

 

where C is the concentration of Trolox (mM), V is volume of extract solution 

(mL), D is dilution factor and W is mass of dried ME (g) 

 

Microbial population dynamics 
Precisely 0.1 mL of broth collected from each sampling interval was 

homogenized in 0.9 mL of sterile saline-peptone water on vortex shaker, then 

serially diluted into appropriate dilution factors (101 to 106). Exactly 0.1 mL 

of each dilution was dispensed onto the following selective media in duplicate: 

Man Rogosa Sharpe agar (MRS) for lactic acid bacteria (LAB), MacConkey 

agar for enterobacteria and potato dextrose agar (PDA) for yeasts. All inocula 

were incubated at 30-37 ºC for 1-2 days, in oxygen-free candle jars. 

Afterwards, single colonies were enumerated in duplicate and expressed in 

terms of Log 10 colony forming unit per mL (CFU/mL). 

 

Development of Artificial neural network (ANN)  
MATLAB® (Math Works Inc. version: R2018a) software was employed for 

coding the ANN algorithm and analysis of the neural network. The neural 

network architecture consists of four layers: The input layer consist two input 

nodes , i.e. the fermentation day and fermenter’s volume, two hidden layers 

and ended by a single output layer (fourth layer) to predict the phenolic 

content, antioxidant capacity, microbial population and pH at its node, as 

illustrated in the Figure 1.  

The experimental database, which was used as input during ANN model 

development for spontaneous fermentation of CPL pericarp is shown in Table 

1. The relationship of each process response (or output) with inputs was based 

on the hypothesis: 

 

Process response= f(fermentation day, fermenter’s volume)      (3) 
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Figure 1: Multilayer ANN topology 

 

Table 1: Database used for the development of ANN model for the 

fermentation of CPL 

 

Responses Unit Range 

Fermenter’s volume L 0-50 

Fermentation day No unit 0-90 

LAB population log 10 CFU/mL 0-8.73 

Enterobacteria 

population 

log 10 CFU/mL 0-4.8 

Yeast population log 10 CFU/mL 0-7.98 

pH No unit 2.71-6.39 

Total phenol content mg GAE/g dry mass 5.7-79.8 

Antioxidant capacity mM TE/g dry mass) 86.9-574.7 

 

As the raw values of input and output variables have significant 

difference between their maximum and minimum values, data normalisation 

was carried out by transforming both input and response values in a range of -

1 to 1 i.e. [-1, 1] for a fair weighted effect. After the ANN simulation ended, 

the normalised data were reverted to their original values.  

ANN is considered a black box since there is no universal ANN model 

topology which is representative to every input-output correlation. Here, trial 

and error computation was carried out using different topologies by 

manipulating the number of neurons of hidden layer (s) and the number of 

hidden layers, and selecting the one that provided the best performance based 

on the error between observed and predicted response values. Eventually, 2-7-

7-1 and 2-10-10-1 ANN architectures were chosen as the optimum networks 
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(Figure 1). The whole network was trained based on random biases and 

weighted values. Starting from the input neuron xi, a single neuron of the first 

hidden layer, nj produces its own output by summing the weighted inputs (wijxi) 

together with linked bias, θj as well as changing the input data to non-linear 

form, as follows [18], [20]: 

 

 
=

=

n

i

iijj xwn

1

      (4) 

 

In the context of this study, the ANN model learned the correlation 

between each of the process response (microbial population, phenolic content 

and antioxidant capacity) with inputs (fermentation day and fermenter’s 

volume) based on the training algorithm assigned. Later, each activation of 

each neuron was calculated according to hyperbolic tangent sigmoid activation 

function (f), as follows: 

 

 1
1

2
)(

)(2
−

+
=+=

+− jjnjjj
e

nfy


    (5) 

 

Equations (4) and (5) were applied from the input layer neurons (inputs) 

which transmitted signal to first hidden layer. Similar process were applied to 

the second hidden layer, leading up to the predicted responses at the final 

output node (yo) at the fourth layer.  

In this paper, the original input-output data set was randomly divided 

into three different data sets; of which 70% of the data set was randomly 

selected for the development of the statistical model and training of the 

network, another 15% of the data set was excluded for the validation and the 

final remaining 15% of the dataset was used as the independent data set to 

check the robustness of the network architecture. Later, the best ANN model 

was selected and used to interpolate the new predicted response values allied 

with the new input data set.   

Tansig function which represented the hyperbolic tangent sigmoid 

function was chosen as the activation function in the multi-layer perceptron 

(MLP), feedforward with backpropagation network as shown in Figure 2 to 

connect the inputs to intermediate layers (or hidden layer). Due to the 

nonlinearity of each response, the same activation function i.e. tansig (rather 

than radbas, satlin, poslin etc.) was used between the two hidden layers and 

finally between the second hidden layer to the output (response) neuron. 

Furthermore, hyperbolic tangent sigmoid function (tansig) was often used 

during ANN modelling of several biological processes such as Aspergillus 

flavus growth [21], bioethanol [22] and biogas yields [23]. The networks were 

further trained with the Lavenberg-Marquardt algorithm (trainlm). During this 



N. Latip et al. 

 

354 

training, the weight values between neurons was adjusted to minimize the error 

between the predicted and experimental responses by a number of iteration 

cycle (epoch) until the best performance goal i.e. mean square error (MSE). 

These were fixed at 1000 and 0.001, respectively at learning rate of 0.01. After 

the training was completed, the neural network was tested using the remaining 

15% of unused data set.  

 

 
 

Figure 2: The feedforward training flowchart for ANN 

 

Statistical evaluation of Artificial Neural Network (ANN) prediction 
The performance of the ANN models were evaluated using the correlation 

coefficient (R), the mean square error (MSE) and the absolute average 

deviation (AAD), which are defined as follows [14]: 

 

        
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where n is the number of points, yi is the predicted value obtained from the 

neural network model, ydi is the experimental value and ym is the average of the 

experimental values. The mean square error (MSE) was calculated as follows: 

 


=

−=

n

i

dii yy
n

MSE

1

2)(
1

    (7) 

 

where n is the number of points, yi is predicted value obtained from ANN and 

ydi is the experimental values. 

Another performance index of an ANN model is its output error due to 

the difference between predicted and experimental response values, which was 

measured by absolute average deviation (ADD), as follows [22]: 
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where yi and ydi are the predicted and experimental response values, 

respectively, and n is the number of data points. A good network performance 

is obtained if the AAD is minimum i.e. less than 10% [23]. 

 

 

Results and Discussion 
 
Total phenolic content (TPC) 
The TPC of final (day 90) fermented CPL extract collected from 5 L fermenter 

was 48.42±0.31 mg GAE/g dm, i.e. four-time higher than the initial (day 0) 

extract, i.e. 12.13±0.39 mg GAE/g dm as shown in Figure 3. Likewise, the 

TPC of final fermented CPL extract collected from 50 L fermenter displayed 

higher TPC value (31.14 mg GAE/g dm) as compared to its initial extract (5.71 

mg GAE/g dm).  

 

 
 

Figure 3: TPC of unfermented (day 0) and fermented CPL (day 90) extracts 

from 5 L and 50 L fermenter 

 

The evolution of TPC apparently displayed continuous increasing trend 

with fermentation time (as shown by Figure 5a in later section). The enhanced 

TPC found in this study was in line with favourable effect of fermentation 
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reported by other studies involving phenolic rich plant materials such as five-

fold increase of TPC of fermented Myrtus communis [9] as well as higher and 

fermented Echinacea spp. [11].  

 
Antioxidant capacity 
The antioxidant property of fermented CPL extract was measured in terms of 

its ability to scavenge DPPH radical which reduced the coloured DPPH to 

DPPH-H [18]. Antioxidant capacity is the hallmark of various health-

promoting functionalities against cancer, obesity, cardiovascular disease and 

other chronic diseases. The antioxidant capacity of final (day 90) fermented 

CPL extract from 5 L fermenter was higher than its initial (day 0), i.e. 

467.38±4.09 mM TE/g dm and 275.46±3.09 mM TE/g dm, respectively as 

shown on Figure 4. Likewise, antioxidant capacity of final fermented CPL 

extract from 50 L fermenter was also higher than its initial, i.e. 405.8 mM TE/g 

dm vs 130.5 mM TE/g dm, respectively.   

 
Figure 4: Antioxidant capacity of initial (day 0) and final (day 90) fermented 

CPL extracts from 5 L and 50 L fermenter 

 

The increase in phenolic content, as mentioned earlier, was the 

suspected cause for the enhanced antioxidant capacity of the fermented CPL. 

Similar effect was observed in earlier studies on fermented Myrtus communis 

[9], cactus cladodes (Opuntia ficus-indica L.) [10] and Echinacea spp [11]. 

The breakdown of polyphenol matrix by the enzymatic action of 

microorgaisms caused the accumulation of compounds with antioxidant 

properties which contributed hydrogen atom for reduction of DPPH radical 

[24][4].  
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Microbial population dynamics 
The population dynamics of different microorganism classifications displayed 

peculiar trends (as later observed in Figure 5 which compared the ANN 

predicted data and the experimental ones). The CPL fermentation was 

characterized by steep growth of presumptive lactic acid bacteria (LAB) as 

displayed by its viable colonies on MRS medium. The identities of LAB which 

predominantly Lactobacillus plantarum was confirmed by our earlier work 

[25]-[26]. In both 5-L and 50-L fermenters, LAB grew rapidly within a week 

of fermentation, then declined after day 10 and maintained its presence 

throughout the remaining fermentation period, as shown in Figure 5c. The 

presumptive enterobacteriaceae, of which mostly belong to Enterobacter and 

Cronobacter genera as reported by our earlier study, was only present at the 

early stage of fermentation before completely inhibited, as shown in Figure 5d. 

The prevalence of LAB was reported in some spontaneously fermented foods 

such as sauerkraut [27], kimchi [25], pickles [3], carrots [5], pineapple [28], 

tempoyak [29], doklu [30], cocoa bean [31] and leek [4].  LAB species were 

known as health-promoting probiotics which prevent diarrhea and colorectal 

cancer, stimulate immune system and hypocholesterolemia effect [32]. Their 

presence also conferred the microbiological safety of fermented products by 

inhibiting food pathogens [30], and potentially linked to total inhibition of 

enterobacteriaceae since the early stage of fermentation. 

Yeast was absent at the onset of fermentation, but its population 

increased exponentially to its maximum within a week. Thereafter, the yeasts 

displayed steady presence throughout the fermentation period as shown in 

Figure 5e. Yeasts were known for their contribution to the sensory quality of 

fermented cocoa bean, which later impacted chocolate flavor [33] and soy 

sauce [34] favorably. The pleasant sensory quality was derived from the 

presence of alcohol and higher alcohols which were converted from sugar and 

primary metabolites such organic acids by yeasts metabolisms. It was also 

believed that yeasts modulated the pH value which otherwise would became 

too acidic and spoiled the taste due to accumulation lactic acid by LAB 

dominance [35]. 

The pH dropped rapidly from pH 6.0 at the onset of the fermentation to 

pH 3.0 at day 4 as shown in Figure 5f, and later persisted at pH 3.0 throughout 

the remaining fermentation. 

Other study surmised the coincidence of pH drop with the accumulation 

of lactic acid due to the rapid growth of presumptive LAB population [29].  
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(d) 

 

 
(e) 

 

 
(f) 

 
Figure 5: Comparison between experimental (solid line) and predicted 

(dashed-Line) of; a) total phenol b) antioxidant capacity c) LAB d) 

enterobacteria e) yeasts, and f) pH during spontaneous fermentation of CPL 

in 5-L and 50-L fermenters 
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Modeling of spontaneous fermentation responses with ANN 
The ANN architecture which trained by of the first and second hidden layers 

of j = 7 and k = 7 as its number of neurons; respectively was selected as the 

best model to represent all process responses during spontaneous fermentation 

of CPL, except for presumptive enterobacteriaceae population where 10 

neurons were used in each hidden layer).  

During the training with 70% data set of each response, the network 

performance based on mean squared error selected as the best model. 

Generally, all selected ANN models displayed a very close proximity between 

the observed and predicted response data as shown in Figure 6. Accordingly, 

a statistical evaluation of each model in terms of R value (of greater than 0.9), 

low MSE and AAD (of less than 10%, which is acceptable for highly nonlinear 

responses) values as shown in Table 2, with the exception of TPC and 

antioxidant capacity. Furthermore, marginal difference of error between the 

observed and predicted values of testing data set and its training data set of 

each response, indicate the reliability of all the selected ANN models. In short 

these indications suggest the robustness of the selected ANN model to make 

prediction from known data (training data sets) as well as generalization of 

independent data (testing data sets) of the process responses during 

spontaneous fermentation of CPL.  

The random distribution of the residual plots at zero horizontal line as 

shown in Figure 6 is indicative of the model robustness and impartiality, thus 

further confirming the predictive ability of the model. 

The effect of fermentation on enhancing the TPC can be attributed to 

enzymatic action of the microorganisms during the fermentation. The role of 

microorganisms such as Lactobacillus plantarum during fermentation as 

reported in our previous work [13] may have caused the breakdown of 

glycosidic and ester bonds of polymeric phenols into free monomers, hence 

enriching the phenolic contents and antioxidant capacity [9]. This view was 

coherent with the predominance of phenolic acids and other flavonoids in 

spontaneously fermented Cornelian cherry as a result of metabolic activities 

during fermentation [7]. It was also believed that simpler compounds in 

fermented papaya were more bioavailable hence resulted in improved 

reductions in peripheral blood mononuclear cell cytolytic activity in tube-fed 

patients [8]. 
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Figure 6: (a)-(f) predicted vs residual plots of responses 
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Table 2. Statistical measures and performance of feedforward algorithm for training, validation and testing data sets for process 

responses during spontaneous fermentation in terms of correlation coefficient (R), mean square error (MSE) and average 

absolute deviation (AAD). 

 
Process 

response 

ANN 

topology 

R MSE  AAD (%) 

Training Validation Testing Training Validation Testing Training Validation Testing 

Total phenol 2-7-7-1 0.992 0.948 0.985 4.132 16.740 9.781 6.88 14.2 12.5 

Antioxidant 

capacity 
2-7-7-1 0.998 0.962 0.993 59.8 2.7x103 499.8 1.4 14.4 8.4 

Lactic acid 

bacteria 
2-7-7-1 0.968 0.957 0.997 0.321 1.632 0.182 4.17 5.06 7.25 

Enterobacteria 
2-10-10-

1 
0.941 0.999 0.997 0.284 0.016 0.041 6.4 1.54 2.06 

Yeasts 2-7-7-1 0.996 0.960 0.966 0.020 0.240 0.078 1.74 9.1 4.56 

pH 2-7-7-1 0.999 0.994 0.996 0.003 0.0126 0.031 1.04 2.96 3.71 
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Conclusion 
 
Spontaneous fermentation has benefited the CPL in terms of enhancing its 

phenolic contents and antioxidant capacity. Analysis on microbial population 

dynamic indicated the cultivation of presumptive LAB species, while the 

undesirable presumptive enterobacteria was completely inhibited since early 

stage of fermentation. The best network architectures which were trained by 

Levenberg-Marquardt training algorithm turned out to be 2-7-7-1 for all 

responses (except 2-10-10-1 for enterobacteria population). Their reliability to 

predict highly nonlinear responses of the fermentation process was 

demonstrated by correlation coefficient (R) of greater than 0.9, low MSE and 

AAD values. 
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