HETEROGENEOUS SUPPORTED KI/Al₂O₃ CATALYST FOR BIODIESEL PRODUCTION FROM WASTE COOKING OIL

SITI NOR SAFIAH BT SELIAMAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences University Technology MARA

JANUARY 2016

ACKNOWLEDGEMENT

Bismillahirahmanirrahim, in the name of Allah, most Gracious, most merciful, I'm very thankful to my parents, for their unconditional love and encouraging me to continue my journey of learning. They have though me that no matter how hard life has become, determination and hard research will steer me towards my destination.

My special thank to my wonderful supervisor, miss Shahida Hanum bt Kamarullah, who has inspired me for the opportunity to investigate a practical problems in the biodiesel production process. I sincerely appreciate her moral support, guidance and abundant help throughout my graduate final year project.

I am also thankful to my ex-supervisor, Madam Siti Nor Hafiza bt Mohd Khazaai, who help me a lot with my project and guided my steps towards my goals. I am forever indebted to all my friends, lab assistance for their patience and unlimited understanding. They was helped me every possible way to make my life easier and been there for me not only as my partner life but also as my guiding spirit.

I am thankful to my group member Zuraidah bt Mohd Shukeri for their help and guidance. I am thankful to UITM give me opportunity to create my undergraduated project as well.

Siti Nor Safiah Seliaman

TABLE OF CONTENTS

		Page
ACK	NOWLEDGEMENT	iii
TAB	LE OF CONTENTS	iv
LIST	OF TABLES	vi
LIST	OF FIGURES	vii
	OF ABBREVIATIONS	viii
	ГКАСТ	ix
ABST	ГКАК	х
СНА	PTER 1 INTRODUCTION	
1.1	Background of study	1
1.2	Problem statement	3
1.3	Significant of study	4
1.4	Objectives	5
	PTER 2 LITERATURE REVIEW	
2.1	Biodiesel	6
	2.1.1 Advantages of biodiesel	12
2.2	2.1.2 Disadvantages of biodiesel Transesterification	12 13
2.2	Feedstock for biodiesel	15
2.5	2.3.1 Waste cooking oil	15
2.4	Catalysts	10
2.1	2.4.1 Homogeneous catalyst transesterification	19
	2.4.2 Heterogeneous catalyst transesterification	20
	2.4.3 Supported catalyst	23
	PTER 3 METHODOLOGY	
3.1	Materials and equipments	25
3.2	Reagents and chemicals	25
3.3	Instruments	26
3.4	Pre-treatment of waste cooking oil	26
3.5	Preparation of catalyst	26
26	3.5.1 Alumina supported potassium iodide catalyst	26
3.6 3.7	Catalyst Characterization Effect of loading amount of KI/Al ₂ O ₃	27
3.8	Transesterification reaction	27 28
3.8 3.9	Blank sample	28
3.10	Acid value	28
5.10		27

3.11	Saponification value	30
3.12	Determination of percentage fatty acid methyl ester	31
3.13	Gas Chromatography Mass Spectrometer analysis	31

CHAPTER 4 RESULT AND DISCUSSION

4.1	Transesterification of biodiesel	32
4.2	Methanol to oil	32
4.3	Reaction time	33
4.4	The loading amount of catalyst	34
4.5	Acid value and saponification value	35
4.6	GC-MS analysis for the confirmation compounds	36
4.7	Characterization of catalyst using the FTIR	41

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Conclusion	43
5.2	Recommendation	44

CITED REFERENCES	45
APPENDICES	48
CURRICULUM VITAE	51

ABSTRACT

HETEROGENEOUS SUPPORTED KI/Al₂O₃ CATALYST FOR BIODIESEL PRODUCTION FROM WASTE COOKING OIL

Nowadays, the consumer demand related with biodiesel has seen a quantum jump. This is because of their benefits associated with its ability to mitigate greenhouse gases (GHG). The transesterification is one of the methods to produce the biodiesel. In this research, alumina oxide supported potassium iodide (KI / Al₂O₃) will act as catalyst and waste cooking oil are chosen as a sample to produce the biodiesel using the method of transesterification. The parameters that used in this research are molar to ratio 15:1, reaction temperature at 65°C, reaction time for 8 hours and amount of catalyst that used. These parameters are affecting the yield of the biodiesel. The experimental result shows the heterogeneous catalyst that calcined at 773K exhibit good catalytic activity in the transesterification of waste cooking oil which is provided the maximum yield 80% at 4 g of catalyst loading, molar ratio 15:1 methanol to oil at temperature 65 °C in reaction time of 8 hours. The catalyst of KI /Al₂O₃ was analyze using the FTIR to know KI is supported or not with Al₂O₃.