SYNTHESIS OF WASTE COOKING OIL – BASED POLYURETHANE SOLID POLYMER ELECTROLYTES: THE EFFECT OF PLASTICIZERS

RAHMATINA BINTI MHD HUZAIZI

Final Year Project Report Submitted In Partial Fulfilment of the Requirements For The Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi Mara

JANUARY 2016

ACKNOWLEDGEMENT

Alhamdulillah, all praises, glory and thanks to Allah, the almighty Lord of the world. Peace and blessing to Nabi Muhammad S.A.W., all the Prophets, his families and all muslims for the strengths and His blessing in completing this thesis. I have gained useful knowledge and experiences which I never encounter before.

First and foremost, special thanks to Madam Syuhada Mohd Tahir as my supervisor for guidance, monitoring and constants encouragement during my thesis. She also has given me the outline and a lot of advice for my projects and her patience teaching towards me throughout the course of this thesis. Thanks to her because she supporting me and for the time in advising which made this work possible and I also very fortune to be under her guidance.

Besides that, I wish to express my sincere appreciation to MARA University of Technology (UiTM) for providing me various infrastructures' such as library, laboratory, and others which enabled me to complete my researches work successfully. Special thanks to laboratory assistant especially Mr Haji Nik, Mr Fauzi, Mr Zahir, Mr Nazrin, Mr Rosli and Mr Azizi for the guidance and valuable information provided by them in their respective fields.

Last but not least, my appreciation goes to my beloved parent and family for their support and encouragement in accomplishing this thesis. The special thanks dedicated to

i

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	i
TABLE OF CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	Vii
ABSTRACT	viii
ABSTRAK	ix

CHAPTER 1 INTRODUCTION

Background of study	1
Problem Statement	3
Significance of study	5
Objectives of study	7
	Problem Statement Significance of study

CHAPTER 2 LITERATURE REVIEW

2.1	Solid Polymer electrolytes	8
	2.1.1 Plasticizer	10
2.2	Polyurethane	13
	2.2.1 Vegetable oil polyurethane – based solid polymer electrolytes	14
2.3	Waste cooking oil – based polyol	17

CHAPTER 3 METHODOLOGY

3.1	Chemicals		20
	3.1.1 Chemical for synthesis of	Waste cooking oil based polyol	20
	3.1.2 Chemical for synthesis of	polyurethane based solid polymer	
	electrolyte.		
3.2	Researches methodology		21
	3.2.1 Waste cooking oil collecti	ion and pre-treatment	22
	3.2.2 Synthesis of Waste cookin	ng oil based polyol	22
	3.2.3 Synthesis of Waste coo	oking oil based Polyurethane Solid	23
	Polymer Electrolyte		
3.3	Characterization of Waste cookin	ng oil and polyol	24
	3.3.1 Percent free fatty acid (%	FFA) determination	24
	3.3.2 Acid Value determination		25
	3.3.3 Iodine value determination	n	26

26 27
27
27
27
28
28

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1	Waste cooking oil	29	9
	4.1.1 Physical properties of Waste cooking oil	29	9
	4.1.2 Chemical analysis of Waste cooking oil	30	0
4.2	Waste cooking oil Based Polyol	34	4
	4.2.1 Physical properties of Polyol	34	4
	4.2.2 Chemical analysis of Polyol	35	5
	4.2.2.1 FTIR of polyol	30	5
4.3	Waste cooking oil based polyurethane solid polymer	electrolyte 39	9
	4.3.1 Physical properties of Polyurethane Solid Po	lymer Electrolyte 39	9
	film		
	4.3.2 Chemical analysis of Polyurethane film	41	1
	4.3.2.1 Fourier Transform Infrared (FTIR) a	malysis 45	5
	4.3.2.2 Electrochemical Impedances Spectro	oscopy (EIS) 45	5
	4.3.2.3 Thermal Gravimetric Analysis (TGA	A) 47	
	4.3.2.4 Differential Scanning Calorimetry	50	
	4.3.2.5 X-ray diffraction (XRD)	51	

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	53
CITED REFERENCES	55
APPENDICES	61
CURRICULUM VITAE	67

ABSTRACT

SYNTHESIS OF WASTE COOKING OIL – BASED POLYURETHANE SOLID POLYMER ELECTROLYTES: THE EFFECT OF PLASTICIZERS

This study was performed to investigate the effect of plasticizers on the properties of the waste cooking oil based polyurethane (PU) solid polymer electrolytes (SPE). The polyurethane was prepared via solution casting method. Polyethylene Glycol(PEG) and Ethylene carbonate(EC) was chosen as plasticizers. The PU SPE films were characterized by using Fourier Transform Infrared (FTIR), Electrochemical Impendence Spectroscopy (EIS), Thermogravimetric analysis (TGA), Differential scanning Calorimetry (DSC) and X-ray Diffraction (XRD). The highest ionic conductivity of 8.40×10^{-8} Scm⁻¹ was achieved with the addition of plasticizer ethylene carbonate (EC) at room temperature and thermally analysis showed by DSC is the lowest transition glass, Tg obtained at 106.0°C. TGA was analyzed that five type of thermal degradation had been obtained. These confirmed as the molecular structure of PU SPE films were investigate by FTIR and the presence of urethane linkage and disappearance of NCO in peak the FTIR spectrum showed that diisocyanate was completely reacted to form PU SPE. The XRD showed that the PU SPE EC was highly amorphous due to broad hump became broader and intensity decreased. These observations indicated the synthesized PU SPE film possessed favorable properties to act as a base material in polymer electrolytes.