SYNTHESIZED AND CHARACTERIZATION OF SODIUM COBALT OXIDE AS SODIUM-ION CATHODE BATTERIES USING SOL-GEL METHOD

NUR ATHIRAH BINTI AZHAR

Final Year Project Report Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2015

ACKNOWLEDGEMENT

ALHAMDULILLAH, firstly I would like to express my gratitude to the Almighty ALLAH S.W.T The Creator, for the Strength, Blessing, Mercy and Guidance throughout the completion of my thesis. My special thanks goes to my Helpful and Supportive supervisor, Miss Sarah Laila binti Mohd Jan for all the guidance, helpful advices and spent time since the beginning of my proposal, lab work and until I complete this thesis. I really felt thankful and grateful to be under her supervision.

I also want to say thanks to Associate Professor Dr. Megat Ahmad Kamal bin Megat Hanafiah as the Head of Programme of Sciences, Mr Haslizaidi bin Zakaria as Chemistry Programme Coordinator and Dr. Aiza binti Harun as Final Year Project Coordinator, for providing us the opportunity to use every facility and instruments available in order for us to perform well in the final year project. I would like to extend my appreciation to all the staff involved including the lab assistant from UiTM Jengka and Universiti Malaysia Pahang (UMP) for their sincere assistance and help. Especially to Mr Haji Nik, Mr Zahir, Mr Fauzi, Mr Azizi and Mr Syukri from UiTM Jengka as well as to Mrs Shahida from UMP.

My deepest gratitude also goes to my beloved parents, Azhar bin Mohamad and Tijah binti Ahmad and also to my siblings and family for their endless love, prayers and encouragement. Not forgotten, to those who indirectly contributed in completing this Final Year Project Thesis, your kindness means a lot to me. Thank you very much.

Nur Athirah binti Azhar

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х

CHAPTER 1 INTRODUCTION

1.1	Background and problem statement	1
1.2	Significance of study	6
1.3	Objectives of study	6

CHAPTER 2 LITERATURE REVIEW

2.1	Battery		7
	2.1.1	Lithium ion battery	8
	2.1.2	Sodium-ion battery	9
2.2 Cathode materi		materials	11
	2.2.1	Cathode materials for lithium-ion battery	11
	2.2.2	Cathode materials for sodium-ion battery	13
2.3	Methods involved in synthesizing of the cathode materials		16
	2.3.1	Solid-state reaction	16
	2.3.2	Sol-gel method	17

CHAPTER 3 METHODOLOGY

3.1	Materials		21
	3.1.1	Chemicals	21
	3.1.2	Apparatus	22
	3.1.3	Instruments	23
3.2	Methods		24
	3.2.1	Synthesizing of sodium cobalt oxide (NaCoO ₂) cathode	24
		material through sol-gel method	

3.2.2	Characterization of sodium cobalt oxide cathode material		26
	3.2.2.1	Thermogravimetric Analysis (TGA)	26
	3.2.2.2	Attenuated Total Reflectance-Fourier	28
		Transform Infrared (ATR-FTIR)	
		Spectroscopy	
	3.2.2.3	Field Emission Scanning Electron	29
		Microscope (FESEM)	

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Characte	Characterization	
	4.1.1	Thermogravimetric Analysis (TGA)	32
	4.1.2	Attenuated Total Reflectance-Fourier Transform	34
		Infrared (ATR-FTIR) Spectroscopy	
	4.1.3	Field Emission Scanning Electron Microscope (FESEM)	37

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 46

CITED REFERENCES	49
APPENDICES	53
CURRICULUM VITAE	56

ABSTRACT

SYNTHESIZED AND CHARACTERIZATION OF SODIUM COBALT OXIDE AS SODIUM-ION CATHODE BATTERIES USING SOL-GEL METHOD

Sodium Cobalt Oxide (NaCoO₂) cathode material in a sodium-ion battery was synthesized by a Polyvinyl Alcohol (PVA) assisted sol-gel method and its physical characterization was being analyzed by using Thermogravimetric Analysis (TGA), Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Field Emission Scanning Electron Microscope (FESEM). After the TGA analysis, the calcination temperature for the cathode material was determined and 800 °C was set up at the furnace. That temperature was chosen as calcination temperature because the TGA curve becomes flat and no mass loss occurs at temperature above 750 °C. It indicates that the reaction was totally completed. In the ATR-FTIR analysis, the presence of cobalt oxide in the sample was confirmed by the peak at 567 cm⁻¹ that indicating the Co-O bond. Others, the peak at 1219 and 1431 cm⁻¹ were corresponding to C-O and C-O-H bond respectively. Under magnification of FESEM, the morphology of cathode material particles were observed heterogeneous, smooth surface and many particles were agglomerate. In this study, the confirmation about electrochemical ability of synthesized NaCoO₂ cathode material cannot be made because no electrochemical characterization was being performed.