SYNTHESIS OF WASTE COOKING OIL-BASED POLYOL VIA DIHYDROXILATION REACTION

NORFAREHA BINTI ABU BAKAR

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2015

ACKNOWLEDGEMENTS

Alhamdulillah, all praises, glory and thanks to Allah, the almighty Lord of the world. Peace and blessing to Nabi Muhammad S.A.W, all the Prophets, his families and all muslims.

I would like to express my special appreciation and thanks to my supervisor, Madam Syuhada Mohd Tahir for her advice and untiring guidance throughout the course of this study. Without her guidance and persistent help this project would not have been possible.

I would like to express my sincere gratitude and thankful to all lab assistants at Faculty of Science Laboratory, UiTM Pahang who in many ways contributed to the successful of my research. Not forgetting, my fellow classmates who have also gave valuable advices and suggestions in completing this project.

Last but not least, I would like to especially thanks and deepest appreciation to my parents, Abu Bakar Zainol and Suhana Embong, my brothers and all my family members for their endless pray, supports and encouragement throughout this project.

Norfareha Abu Bakar

TABLE OF CONTENTS

	Pages
ACKNOWLEDGEMENTS TABLE OF CONTENTS	iii iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х
CHAPTER 1 INTRODUCTION	
1.1 Background of study	1
1.2 Problems statement	4
1.3 Significance of study	5
1.4 Objectives	6
CHAPTER 2 LITERATURE REVIEW	
2.1 Polyurethane	7
2.2 Vegetable oil-based polyol	8
2.3 Waste cooking oil-based polyol	15
CHAPTER 3 METHODOLOGY	
3.1 Chemical reagent	18
3.2 Research methodology	20
3.2.1 Waste cooking oil collection and pre-treatment	20
3.2.2 Synthesis of waste cooking oil-based polyol via dihydroxylation	20
reaction	20
3.3 Characterization of waste cooking oil and polyol	23
3.3.1 Free fatty acid percentages determination	23
3.3.2 Acid value determination	24
3.3.3 Hydroxyl value determination	24
3.3.4 Iodine value determination	25
3.3.5 Fourier Transform Infrared (FTIR) analysis	27
3.3.6 Gas Chromatography-Mass Spectrometry (GC-MS)	27

3.3.7 Thermogravimetric Analysis (TGA)

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Waste cooking oil (WCO)	
4.1.1 Physical properties	29
4.1.2 Chemical analysis	29
4.1.2.1 Free Fatty Acid percentages of waste cooking oil	30
4.1.2.2 Acid value of waste cooking oil	30
4.1.2.3 Hydroxyl value of waste cooking oil	31
4.1.2.4 Iodine value of waste cooking oil	31
4.1.2.5 Fourier Transform Infrared (FTIR) analysis	32
4.2 Waste cooking oil-based polyol	32
4.2.1 Physical properties	35
4.2.2 Chemical analysis	35
4.2.2.1 Free Fatty Acid percentages of waste cooking oil-based	36
polyol	36
4.2.2.2 Acid value of waste cooking oil-based polyol	38
4.2.2.3 Hydroxyl value waste cooking oil-based polyol	38
4.2.2.4 Iodine value waste cooking oil-based polyol	41
4.2.2.5 Fourier Transform Infrared (FTIR) analysis	43
4.2.2.6 Gas Chromatography-Mass Spectrometry (GC-MS)	46
4.2.3 Thermal analysis	50
4.3.1Thermogravimetric Analysis (TGA)	50

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion	52
5.2 Recommendations	53

CITED REFERENCES	54
APPENDICES	58
CURRICULUM VITAE	68

ABSTRACT

<u>SYNTHESIS OF WASTE COOKING OIL-BASED POLYOL VIA</u> <u>DIHYDROXYLATION REACTION</u>

The study was carried out to synthesize waste cooking oil (WCO)-based polyol intended for polyurethane polymers, via dihydroxylation reaction. The raw WCO was first pre-treated in order to purify the oil. Next, the purified WCO was used to synthesize polyol using osmium tetroxide (OsO4) as catalyst and two different oxidants, N-methylmorpholin N-oxide (NMO) and hydrogen peroxide (H₂O₂). The WCO showed low number of free fatty acid percentages (%FFA), acid value (AV), hydroxyl value (OHV) and high number of iodine value (IV), 2.387%, 4.750 mg KOH/g, 5.030 mg KOH/g and 328.74 mg KOH/g respectively. The FTIR spectra of all WCO-based polyol samples showed the presence of OH absorption peak and supported by the increase in OHV up to 591.36 mg KOH/g after the reaction. It was found that the use of NMO produced higher OHV than H₂O₂ and the OHV increased as the OsO₄ loading increased. From GC-MS results, the functionality of WCObased polyol is 3.0 to 8.0. The thermal characterization using TGA revealed that the decomposition of polyol occured in few stages. From this study, it can be concluded that dihydroxylation reaction is suitable to produce WCO-based polyol with comparable properties to the existing vegetable oil-based and petroleum-based polyol.